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A B S T R A C T   

Grazing lands play a significant role in global carbon (C) dynamics, holding substantial soil organic carbon (SOC) 
stocks. However, historical mismanagement (e.g., overgrazing and land-use change) has led to substantial SOC 
losses. Regenerative practices, such as adaptive multi-paddock (AMP) grazing, offer a promising avenue to 
improve soil health and help combat climate change by increasing SOC accrual, both in its particulate (POC) and 
mineral-associated (MAOC) organic C components. Because adaptive grazing patterns emerge from the combi-
nation of different levers such as frequency, intensity, and timing of grazing, studying AMP grazing management 
in experimental trials and representing it in models remains challenging. Existing ecosystem models lack the 
capacity to predict how different adaptive grazing levers affect SOC storage and its distribution between POC and 
MAOC and along the soil profile accurately. Therefore, they cannot adequately assist decision-makers in effec-
tively optimizing adaptive practices based on SOC outcomes. Here, we address this critical gap by developing 
version 2.34 of the MEMS 2 model. This version advances the previous by incorporating perennial grass growth 
and grazing submodules to simulate grass green-up and dormancy, reserve organ dynamics, the influence of 
standing dead plant mass on new plant growth, grass and supplemental feed consumption by animals, and their 
feces and urine input to soil. Using data from grazing experiments in the southeastern United States and 
experimental SOC data from two conventional and three AMP grazing sites in Mississippi, we tested the capacity 
of MEMS 2.34 to simulate grass forage production, total SOC, POC, and MAOC dynamics to 1-m depth. Further, 
we manipulated grazing management levers, i.e., timing, intensity, and frequency, to do a sensitivity analysis of 
their effects on SOC dynamics in the long term. Our findings indicate that the model can represent bahiagrass 
forage production (BIAS = 9.51 g C m−2, RRMSE = 0.27, RMSE = 65.57 g C m−2, R2 = 0.72) and accurately 
captured the dynamics of SOC fractions across sites and depths (0–15 cm: RRMSE = 0.05; 15–100 cm: RRMSE =
1.08–2.07), aligning with patterns observed in the measured data. The model best captured SOC and MAOC 
stocks across AMP sites in the 0–15 cm layer, while POC was best predicted at-depth. Otherwise, the model 
tended to overestimate SOC and MAOC below 15 cm, and POC in the topsoil. Our simulations indicate that 
grazing frequency and intensity were key levers for enhancing SOC stocks compared to the current management 
baseline, with decreasing grazing intensity yielding the highest SOC after 50 years (63.7–65.9 Mg C ha−1). By 
enhancing our understanding of the effects of adaptive grazing management on SOC pools in the southeastern U. 
S., MEMS 2.34 offers a valuable tool for researchers, producers, and policymakers to make AMP grazing man-
agement decisions based on potential SOC outcomes.   

1. Introduction 

Grazing is an important process both agriculturally and bio-
geochemically. Grazing lands managed for agriculture currently span 
millions of acres, which collectively hold ~30% of all terrestrial soil 

organic carbon (SOC) on Earth (Dondini et al., 2023). Due to historically 
poor management, intensification, and land-use change, many grazing 
lands have lost large amounts of their original SOC stocks (Sanderman 
et al., 2017). Improved management of grazing lands holds potential as a 
tool for leveraging SOC sequestration as a climate change mitigation 
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strategy (Bai and Cotrufo, 2022; Conant et al., 2017). Recent evidence 
suggests that adaptive multi-paddock (AMP) grazing, a strategy which 
employs adaptive and frequent movement of animals at 
greater-than-average stocking densities and longer pasture rest periods, 
is associated with increased SOC along the soil profile, particularly in the 
mineral-associated organic matter (MAOM) fraction (Mosier et al., 
2021). Despite the importance of grazing management as a control on 
SOC dynamics, no validated process-based ecosystem models exist to 
represent and predict how AMP grazing management affects SOC stock 
dynamics. Such ecosystem models can act as decision support tools at 
multiple levels, including helping to inform producers’ grazing man-
agement strategies for sequestering SOC, helping researchers under-
stand the potential for grazing to support climate change mitigation, and 
even helping policy makers and governing bodies design incentive 
structures for effective management practices. The need for these pre-
dictive ecosystem models is especially pressing for grazing lands, where 
gold-standard SOC measurements can be prohibitively time, labor, and 
cost-intensive (Stanley et al., 2023). Ecosystem models thus have the 
potential to greatly improve the understanding of grazing management 
on SOC by bridging the gap between expensive field measurements and 
scalable predictions. 

Several ecosystem models currently simulate grazing but have 
important limitations. These limitations include only representing 
croplands, neglecting mechanistic controls on SOC (e.g., nitrogen (N) 
availability), simulating only topsoil SOC dynamics, oversimplifying 
grass responses to defoliation, or interpreting grazing simply as a 
mowing event (Ma et al., 2019). Grazing lands exhibit unique biogeo-
chemical processes compared to croplands and often have plant com-
munities with an evolutionary history of adaptation to grazing, which 
can drive distinct responses to defoliation (Oesterheld and Semmartin, 
2011). Ecosystem models that attempt to simulate biogeochemical re-
sponses to grazing also tend to have large errors, on average, high-
lighting the need to improve modeling capabilities for these systems 
(Ehrhardt et al., 2018). Additionally, several models have been designed 
for hydrologic and biomass production purposes on grazing lands, but 
few have been developed specifically to also represent soil processes and 
SOC storage (Wang et al., 2020). 

DayCent, one of the most widely used ecosystem models for assessing 
SOC dynamics, simulates grazing on grazing lands (Damian et al., 2021; 
Silva et al., 2022), but still falls short from representing important yet 
complex biogeochemical processes in these systems. Biogeochemically, 
DayCent models SOC components as conceptual pools empirically 
defined by assumed mean residence times rather than representing 
measurable SOC fractions that are defined mechanistically. This limits 
predictive capabilities under novel environmental conditions or man-
agement practices and makes it impossible to test hypotheses related to 
how specific processes produce patterns and outcomes. For example, 
rather than the “active,” “passive,” and “slow” SOC pools conceptually 
represented in DayCent, SOC is better understood when divided into the 
functionally distinct, measurable particulate organic matter (POM) and 
MAOM fractions (Lavallee et al., 2020). In fact, POM and MAOM form, 
persist, and turn over through different mechanisms (Cotrufo and Lav-
allee, 2022), which respond differently to environmental and manage-
ment changes (Prairie et al., 2023; Rocci et al., 2021), including grazing 
management (Mosier et al., 2021), making their representation in 
models extremely critical (Rocci et al., 2024). Grazing lands generally 
contain a significant portion of SOC in MAOM, which is a persistent form 
of SOC important for long-term SOC storage but with the potential to 
eventually saturate (Cotrufo et al., 2019; Bai and Cotrufo, 2022). 
Alternatively, while POM appears to be a smaller pool of SOC in grazing 
lands, its formation may be favored under certain managements, cli-
mates, and soil textures (Hansen et al., 2024). As POM and MAOM form 
from structural and soluble inputs, respectively (Cotrufo et al., 2015), 
and N availability may affect their dynamics differently (Averill and 
Waring, 2017), with MAOM having a higher demand for N than POM 
(Cotrufo et al., 2019), the impact of grazing on plant and nutrient inputs 

to soil might be critical to POM and MAOM formation. In sum, building 
SOC responses to grazing in terms of POM and MAOM into ecosystem 
models would improve alignment with experimental data and could 
inform grazing management practices favorable to accumulating POM 
and MAOM in a way that is more tailored to climatic change mitigation 
(Stanley et al., 2024). DayCent serves as the foundational soil biogeo-
chemical module of many grazing models (e.g., APEX, SAVANNA, ISFM, 
and PaSim; Ma et al., 2019), which therefore face the same challenges. 

To represent the state-of-the art understanding of SOC dynamics 
(Cotrufo et al., 2013, 2015; Kleber et al., 2015; Schrumpf et al., 2021; 
Sokol et al., 2019) and represent functionally different measurable SOC 
pools, i.e. particulate (POC) and mineral-associated (MAOC) organic C 
(Lavallee et al., 2020), we developed the process-based MEMS 2.0 
ecosystem model (Zhang et al., 2021). Stemming from the SOC model, 
MEMS 1.0 (Robertson et al., 2019), MEMS 2.0 represents full ecosystem 
dynamics including plant growth, root inputs, N controls on plant and 
SOC dynamics through the depth profile, soil hydrology, and SOC 
transport (Zhang et al., 2021). In this study, we present our efforts to 
further develop the model into a new version – MEMS 2.34 (Cotrufo 
et al., 2013, 2015; Kleber et al., 2015; Schrumpf et al., 2021; Sokol et al., 
2019) to represent perennial grasslands under AMP grazing and over-
come many of the above-described challenges. This work was motivated 
by the several limitations which prevented MEMS 2.0 from simulating 
ecosystem outcomes from grazing management on grazing lands. For 
example, it treated annual and perennial grasses similarly despite their 
different growth strategies. Perennial grasses possess physiological 
structures that serve as reservoirs for storing carbohydrates and essential 
nutrients, commonly identified as the crown, stolon, or rhizome (White, 
1973). Unlike annual plants that invest most of their energy into seed 
production, perennials invest in reserve organs (e.g., rhizome, stolon) 
(Herrmann and Schachtel, 2001; Jing et al., 2012; Rymph, 2004). These 
organs play an important role in facilitating the persistence of these 
grasses across seasons, enabling them to adapt to adverse environmental 
conditions and recover from defoliation events (i.e., grazing; Benot 
et al., 2019). Further, MEMS 2.0 could not accurately predict the 
phenological events of perennial grasses, particularly the timing of 
green-up (the onset of growth after dormancy) and the transition into 
dormancy. These critical phenological stages exert a large influence on 
the growth patterns and overall biomass production of perennial grasses 
(Piao et al., 2007). 

Additionally, process-based ecosystem models developed to simulate 
grazing effects on SOC (including MEMS 2.0) have featured only rudi-
mentary grazing aspects, which have limited their implications to 
inform realistic grazing management. Grazing management practices 
vary greatly and involve a complex series of ecological feedbacks that 
differ across a wide variety of climates (Stanley et al., 2024). For 
example, some producers may not rotate grazing animals across their 
land base at all, while others may choose to rotate based on a set 
schedule (e.g., 1x/month), and others may choose to rotate animals 
based on ecological cues (e.g., plant recovery, seasonality, etc.). Field 
studies have not well captured these unique management features of 
grazing systems, instead relying mostly on poorly-defined parameters of 
grazing intensity (Stanley et al., 2024). These limitations of grazing 
management parameters in experimental datasets have therefore 
translated into problematic representations of grazing management in 
models (Brilli et al., 2017; Ma et al., 2019; Wang et al., 2020). Instead, 
incorporating management levers typically manipulated by producers 
on grazing lands, including the timing, duration, frequency, and in-
tensity of grazing (Stanley et al., 2024) could be more useful for end 
users to model the impact of realistic grazing decisions on SOC 
outcomes. 

Ecosystem models representing the current understanding of con-
trols on SOC accrual and persistence (Rocci et al., 2024), with the ability 
to predict the effects of grazing management practices on SOC are ur-
gently needed by researchers, producers, and policy makers. To address 
this need, we modified the MEMS 2 model to expand its capabilities 
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with: 1) improved representation of perennial grass growth and biomass 
production dynamics, and 2) exploratory capacity to simulate ecosystem 
outcomes from grazing management. Our new grazing model, MEMS 
2.34, includes two new main components: biomass removal by herbi-
vores and the return of nutrients through feces and urine deposition. To 
make these model improvements, we used experimental data on 
perennial grass from various locations across the southeastern United 
States and SOC measurements from AMP-grazed and conventionally 
managed farms in Mississippi. 

2. Material and methods 

2.1. MEMS 2.34 – grazing model description 

2.1.1. Green-up and dormancy 
Green-up and dormancy are two critical phenology stages of peren-

nial grasses. Similar to our annual crop submodel, we based phenology 
stage calculations on heat units. The heat units (or growing degree days) 
are the accumulation of heat within a certain temperature range, which 
could be modified by the effect of daylength (photoperiod) and/or 
abiotic stresses at certain growing stages in some species (Soltani et al., 
2012). 

The timing of grass green-up in the spring for temperate climates is 
driven by daylength and soil temperature. To adjust for this in our 
model, we followed the method described in Xin et al. (2015). We used a 
daylength threshold value to set the start of the heat unit accumulation 
using the temperature of the first soil layer (0–2 cm) internally defined 
in the model. At the completion of the accumulation of heat units, the 
grass is ready for green-up if the soil water potential meets the minimum 
requirement. 

We designed dormancy in the model to be triggered by any of the 
following situations: completion of heat units accumulation (growth 
cycle completion), daylength falling below a specified threshold, frost 
kill temperature, or plant water stress. The threshold for daylength is an 
input parameter with a default value provided in Xin et al. (2015). The 
frost kill temperature is a user-defined value that the model compares to 
the daily minimum temperature. If the plant water stress (below a 
specified threshold and calculated based on the actual and potential 
transpiration) persists for over 14 days, the plant will enter dormancy. In 
tropical and other regions characterized by wet and dry seasons, the 
model can be configured to respond solely to soil moisture levels, 
regulating green-up and dormancy accordingly. 

2.1.2. Perennial grass reserve organ 
The perennial grass reserve organ in MEMS 2.34 comprises both a 

structural and a non-structural (predominantly carbohydrate) pool 
(White, 1973). The non-structural pool serves as a dynamic resource, 
which can be mobilized to meet the carbohydrate requirements of other 
organs as needed. The reserve organ maintains a balance between 
minimum and maximum N content. Nitrogen is translocated to the 
reserve organ post-seeding and before entering complete dormancy, 
facilitating its readiness for subsequent growth cycles (Rymph, 2004). 
Additionally, the translocation of N remains flexible, allowing plants to 
utilize it for growth when required. 

The presence of the reserve organ required us to modify the alloca-
tion of net primary production (NPP) to account for its energy storage. In 
MEMS 2.0, the NPP allocation to plant organs (e.g., leaf and stem) is 
dynamic according to the stage of phenology, using predefined curves 
that were calibrated for different species and varieties (Zhang et al., 
2021). For example, the calibrated allocation curves for Bahiagrass 
(Paspalum notatum), the dominant perennial grass species in our study 
region (Wang et al., 2021), were presented in Supplementary material – 
Figure S1. 

Defoliation influences the allocation of NPP between aboveground 
and belowground components in grasses (Turner et al., 1993). To ac-
count for this effect, we modeled a critical live shoot-to-root ratio, below 

which NPP is preferentially allocated towards aboveground growth 
(Gong et al., 2015; Yin et al., 2005). The proportion of NPP allocated to 
aboveground biomass increases as the shoot-to-root ratio decreases. This 
mechanism operates in conjunction with the reserve organ pool to 
facilitate rapid aboveground recovery after defoliation events. As a 
result, the model simulates the plant’s ability to replenish photosyn-
thetic tissues and restore its capacity for C assimilation following 
defoliation. 

2.1.3. Impact of standing dead on new plant growth 
Standing dead material can hinder the growth of new leaves by 

shading, thus reducing access to sunlight (Knapp, 1984). The MEMS 2.0 
model assumed a simple homogeneous canopy structure, where green 
tissues, senesced tissues, and standing dead litter from the previous 
growing season intercepted light equally based on their leaf area. 

In MEMS 2.34, we used similar assumptions and methods presented 
in Spitters and Aerts (1983) who simulate grass species competition by 
dividing the canopy into multiple layers. We made three key assump-
tions to better reflect the impact of shading by standing dead plant 
material on new growth. First, recently senesced leaves are located at 
the bottom of the canopy (Yin, 2000). Second, based on the heights of 
green and standing dead tissues from the previous growing season, the 
canopy can be divided into two layers: a top layer consisting of a single 
component (green or standing dead) and a bottom layer that is a ho-
mogeneous mixture (Spitters and Aerts, 1983). Third, a rectangular leaf 
area density function was employed (Spitters and Aerts, 1983), simpli-
fying the partitioning of leaf area index (LAI) into layers. The LAI of live 
and the standing dead biomass in each layer is proportional to their 
respective heights within that layer. We calculate light interception 
separately for each layer using the Beer-Lambert law (Monsi and Saeki, 
2005). The top layer’s light interception is determined by its LAI, while 
the bottom layer’s light interception accounts for the total LAI of all 
components minus the top layer’s contribution. 

2.1.4. Grazing and supplemental feeding events 
Grazing and supplemental feeding events were incorporated in 

MEMS 2.34, allowing users to schedule their management practices. 
These events trigger the calculation of daily biomass removal and the 
return of feces and urine to the field. For simplicity, we designed the 
animal forage intake rate (as a percentage of body weight) as a user- 
defined input. 

Users create daily grazing events in the management schedule input 
file, defining: (1) the start and end dates of grazing periods (minimum of 
one day); (2) the animal type (e.g., cattle and sheep), and (3) the 
stocking density, i.e., the number of animals expressed in terms of ani-
mal units (AU; based on 500 kg) per area (m2) of land being grazed at 
any one period (Allen et al., 2011). The users can add and define animal 
types according to the traits of specific herds. However, only one type of 
animal can be used for each period and mixed herds comprising animals 
of varying ages and genders can only be defined using one set of pa-
rameters that represent the average traits of that herd. 

Supplemental feed can also be added as a management event when 
the animals remain in the field. We assumed that animals prioritize 
consuming the supplemental feed, turning to forage from the field (live 
or standing dead material) only if their demand isn’t met. Users can 
create daily supplemental feed events in the management schedule input 
file, defining: (1) the start and end dates of supplemental feeding periods 
(minimum of one day); (2) supplemental feed amount (g m−2), and (3) 
feed quality, expressed as C and N content, soluble and acid unhy-
drolyzable fractions, and cellulose and hemicellulose fractions, which 
we describe further below. Like plant biomass, feed digestibility and N- 
excreta returned to soil is calculated based on feed quality. 

2.1.5. Digestible nutrient content 
Forage quality (i.e., chemical composition) drives the digestible 

nutrient contents, which determines the partitioning of C and N 
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assimilated by the animals. This influences the quantity and composition 
of C and N returned into the soil organic matter pools through feces and 
urine (Fig. 1). This development is a key advantage of MEMS 2.34 to 
mechanistically represent grazing effects on SOC compared to other 
widely used ecosystem models (as they do not account for forage qual-
ity) (e.g., DNDC and DayCent; Saggar et al., 2004; Hartman et al., 2018). 

In the original MEMS 2.0, plant biomass was separated into soluble, 
hydrolyzable, and acid unhydrolyzable pools (excluding ash; Zhang 
et al., 2021). In MEMS 2.34, the digestible nutrient content of each of 
these pools is calculated based on their chemical composition assessed 
through different methods. We defined the soluble pool as 
non-structural carbohydrates and amino acids extracted through hot 
water (Soong et al., 2015). The digestibility of non-structural carbohy-
drates is set to 0.98 following Heinke et al. (2023). Amino acids repre-
sent the only soluble N pool, and their mass is calculated from the %N of 
the soluble pool, assuming an average N content of amino acid of 16% 
(Heinke et al., 2023). The digestibility of amino acids is then calculated 
as for crude protein (described below). We did not include other minor 
soluble compounds for simplicity. The hydrolyzable pool is comprised of 
proteins, hemicelluloses, celluloses, fatty acids, and other minor con-
stituents. For simplicity, the latter is grouped with and treated as fatty 
acids. Celluloses and hemicelluloses are grouped into a new plant input 
parameter measurable as the neutral detergent fiber (NDF) excluding 
lignin and ash (Van Soest et al., 1991). The digestibility of cellulose and 
hemicellulose is calculated using the equation from the National 
Research Council (2001) derived from a study conducted by Weiss et al. 
(1992). Proteins are assumed to contain all the N of the hydrolyzable 
pool, and their digestibility is calculated using the linear equations 
described in Wardeh (1981). The acid unhydrolyzable pool is mainly 
comprised of lignin. This constituent is obtained through the acid 
detergent fiber (ADF) digestion method, with the acid-unhydrolyzable 
residue (AUR) serving as a proxy for lignin (Rowland and Roberts, 
1994). Because lignin has typically a negligible N content, it was 

assumed to have zero digestibility (Heinke et al., 2023). 

2.1.6. Feces and urine production and input to soil 
The C and N returning to the fields as feces and urine are estimated 

from the digestibility, for the animal, of each of the biomass pools. The C 
and N in feces are the non-digestible C and N fractions of these pools. 
The N of urine is calculated based on the following mass balance 
equation (Heinke et al., 2023; Ruelle et al., 2018): 

Nurine =Nintake − Nfeces Equation 1 

The components in the equation are the N weight in urine, total 
intake biomass, and feces. Note that the equation did not account for the 
N retention in the animal body weight which could be a significant 
proportion (Haynes and Williams, 1993). The C in urine is neglected in 
our model. 

We created a new set of soil surface litter pools (i.e., soluble, hy-
drolyzable, and unhydrolyzable) for feces (Fig. 1). Because of a lack of 
data, the decomposition of feces is calculated in the same way as plant 
litter. We are carrying out field studies to determine if a different set of 
decay parameters should be used for feces. For simplicity, urine was 
added to the soil surface ammonium pool, as urine is primarily 
comprised of urea. 

2.2. Observed data used for modeling 

2.2.1. Study sites description and soil sampling 
Based on the available literature (Apfelbaum et al., 2022; Mosier 

et al., 2021; Wang et al., 2021; White et al., 2023) and additional data 
collected from two paired farms under conventional grazing (CG) and 
AMP grazing management in Woodville, Mississippi (Supplementary 
material – Figure S1), we initialized and assessed the performance of 
MEMS 2.34. The CG farm has been managed under CG management for 
approximately 50 years, whereas the AMP farm has been under AMP 

Fig. 1. Schematic representation of the MEMS 2.34 ecosystem model representing the inclusion of livestock grazing contributing to manure and mineral N inputs to 
soils. Figure adapted from Zhang et al. (2021) under the terms of the Creative Commons Attribution 4.0 License. Illustration by Dr. Jocelyn M. Lavallee. ANPP: above 
ground net primary productivity. BNPP: below ground net primary productivity. DOM: dissolved organic matter. POM: particulate organic matter. MAOM: 
mineral-associated organic matter (MAOM) consists of exchangeable and stable component pools (eMAOM and sMAOM, respectively). N: nitrogen. 
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management since 2007, preceded by 13 years of CG management. 
Conventional grazing involves leaving animals in an open area and 
continuously or infrequently moving them. In this approach, the 
stocking density is the main control of the forage availability (Mosier 
et al., 2021). The CG farm divides its total grazeable acres into five large 
pastures (e.g., 8.1 ha each). In a typical year under this management 
approach, animals (~62 AU) are left free to graze in an individual 
pasture for 5–10 days before being moved to another pasture, where this 
cycle is repeated. In contrast, AMP grazing management is characterized 
by short-duration rotational grazing (e.g., 1–2 days) at high stocking 
density across numerous temporary fenced paddocks. The number, size, 
and time of recovery varies according to many factors, including season, 
forage availability, precipitation, and temperature. In a typical year at 
the AMP farm, 250 AU are rotated across 216 ha of grazable land 
separated into 40–100 paddocks. At the start of the year, when forage is 
less available, fewer large paddocks (e.g., 8.1 ha) are used, while in late 
spring-early summer, when forage production is high, smaller paddocks 
(e.g., 0.8 ha) are used. Both farms primarily focus on beef cattle 
production. 

In general, at the CG farm, the grazing period begins in early March 
and goes through November. At the AMP farm, this period is reportedly 
longer (e.g., from mid-February to mid-December). Bahiagrass is the 
most dominant grass on both farms, though the AMP farm has greater 
species diversity (Wang et al., 2021). During the winter, when grasses 
are dormant, both farms rely primarily on supplemental feed (e.g., bales 
of hay, protein supplement) as the forage available in the field is not 
enough to meet animal nutrition needs. The supplemental feed is spread 
out daily in the pasture or paddock during this period as animals are 
rotated across the farm. The amount of hay and the duration of the 
supplemental feed vary based on how weather conditions (i.e., frost, 
precipitation rate) affect the quantity and quality of the standing dead 
material at the end of the season. In a typical year, the supplemental 
period lasts for about 30–90 days, and 1361–2268 kg of hay is spread out 
on the field daily. 

Soil sampling campaigns were performed by Resource Environ-
mental Solutions LLC and Shell International Exploration and Produc-
tion Inc. at different representative sites across both farms to capture the 
impact of CG and AMP management on soil organic matter dynamics. At 
the AMP farm, samples were collected at three sites: AMP-1 in 2019 (n =
25) and 2022 (n = 6), and AMP-2 and AMP-3 in 2022 (n = 6). At the CG 
farm, samples were collected at two sites: CG-1 and CG-2 in 2022 (n = 6) 
(Supplementary material – Figure S1). More samples were taken at the 
AMP farm in 2019 (following a grid pattern with 25 squared cells each 
having 25 × 25 m); this field campaign was aimed to better understand 
SOC spatial heterogeneity, which is beyond our study’s scope. However, 
we included this data in our simulations for robustness. In other years, 
six samples per site were collected. 

An ATV-mounted Giddings hydraulic sampling unit was used to 
collect intact soil cores in plastic sleeves (5 cm in diameter x 1 m length). 
The intact cores were shipped in crates to Cquester Analytics LLC. These 
soil cores were kept refrigerated until segmented into depth intervals of 
0–15, 15–30, 30–50, 50–70, and 70–100 cm, processed, and analyzed as 
described in Mosier et al. (2021). Briefly, soil samples were heat-treated 
(116 ◦C for 24–48 h) according to USDA APHIS protocol. Afterwards, 
bulk soils were 8-mm sieved, and then a subsample was 2-mm sieved for 
fractionation and elemental analyses. 

2.2.2. SOC fraction analysis 
Soil organic matter was fractionated by density (1.85 g cm−3) and 

size (<53 μm) into three functionally distinct fractions: light particulate 
organic matter, coarse heavy organic matter, and mineral-associated 
organic matter as described in Leuthold et al. (2024). An additional 
subsample of the 2-mm sieved soil was finely ground and tested for 
inorganic C, which was not detected in any sample. All bulk soils and 
fractions were then analyzed for SOC by the dry combustion method. 

As the MEMS 2.34 model simulates SOC pools as POC and MAOC 

(Fig. 1), we report the measured C in the light particulate organic matter 
as POC, and in the mineral and coarse heavy associated organic matter 
as MAOC. This is because the chemical characteristics of these two 
heavy fractions are the most similar and distinct from the light POC 
fraction (Leuthold et al., 2024). 

2.2.3. Parameterization of perennial crop (Bahiagrass) 
We parameterized bahiagrass for MEMS 2.34 using literature-based 

plant physiological parameters and data from three experimental sites 
in Alabama, Florida, and Texas (Table 1), where bahiagrass is commonly 
cultivated. Plant parameters were adjusted manually to minimize the 
overall error and bias statistics described below. 

2.3. Model initialization, calibration, and validation 

We aimed to validate the ability of the MEMS 2.34 model to repro-
duce SOC values after conversion to adaptive grazing management. To 
this end, we first initialized the model with our experimental site envi-
ronmental conditions and brought it to equilibrium as native grassland 
by running the model for a 2000-year period. Then, according to verbal 
site management information, we simulated the onset of CG in 1974 and 
conversion to AMP in 2007. We adjusted the grazing management 
schedule from 1974 to 2007 to match the measured topsoil SOC stock 
(0–15 cm) at the CG sites, as the historical management information was 
lacking. 

We used information from the NOAA database (https://www.ncdc. 
noaa.gov/cdo-web/datatools/findstation) and soil measurements 
collected at each of the study sites to prepare the weather and soil input 
files. Additionally, management schedule files were prepared based on 
information obtained from the two farmers (e.g., AU, pasture sizes, 
number of paddocks). 

2.4. Model performance evaluation 

We quantitatively assessed the MEMS 2.34 model’s goodness of fit to 
simulate grass productivity and SOC dynamics. The fit of bahiagrass 
simulations was evaluated by comparing simulated to measured forage 
production through the coefficient of determination (R2), BIAS, root 
mean square error (RMSE), and relative root mean square error 
(RRMSE). 

The same statistical tests were applied to compare simulated and 
observed values of bulk SOC and its distribution in POC and MAOC for 

Table 1 
Summary of experiments used to parameterize bahiagrass in MEMS 2.34.  

Location Years Treatment Soil class Weather data 
source 

Citation 

Auburn, 
AL 

2006–2015 270 kg N 
ha−1 yr−1 

Blanton 
loamy 
sanda 

NOAA (local 
station: 
USC00010425) 

Prior 
et al. 
(2019) 

Ona, FL 1997–1998 0, 39, 78, 
118, and 
157 kg N 
ha−1 

cutting−1 

Pomona 
fine 
sandb 

FAWN and 
Daymet 

Johnson 
et al. 
(2001) 

Eagle 
Lake, 
TX 

1979–1980 0, 84, 168, 
252, and 
336 kg N 
ha−1 

Crowley 
fine 
sandy 
loamb 

iAIMS Climatic 
data 

Evers 
(1985)  

a NCSS - National Cooperative Soil Survey Soil Characterization Database 
(https://ncsslabdatamart.sc.egov.usda.gov). 

b Smith et al. (2023). NOAA: National Oceanic and Atmospheric Adminis-
tration (https://www.ncdc.noaa.gov/cdo-web/datatools/findstation). iAIMS: 
Integrated Agricultural Information and Management System (Wilson et al., 
2024). Florida Automated Weather Network [FAWN; Peeling et al. (2023)]. 
Daymet [Thornton et al. (2022)]. 
Soil data obtained from: 
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each soil layer across the AMP grazed sites. 

2.5. Projected scenarios 

Since the premise of AMP grazing is that management decisions 
should be tailored to site-specific conditions and responses (e.g., 
weather conditions, plant growth, recovery, etc.), we did not think it is 
appropriate or universally applicable to define a set of prescriptive 
practices associated with this management. Instead, focusing on 
fundamental grazing management levers, including timing, duration, 
intensity, and frequency, as characteristics of specific grazing patterns 
can be more representative and meaningful to ranchers. Stanley et al. 
(2024) recently proposed a unified conceptual framework based on 
ecosystem functions and soil biogeochemistry (e.g., SOC dynamics), 
where these grazing levers can be manipulated strategically to optimize 
SOC sequestration. 

Following this conceptual framework, we used MEMS 2.34 to 
explore how manipulations to each of these grazing levers align with 
AMP grazing principles associated with our sites (Table 2) in affecting 
SOC storage and the vertical distributions of POC and MAOC (Fig. 1). 
The AMP sites (namely AMP-1, AMP-2, and AMP-3) were run individ-
ually in the model for each of these levers. The current AMP grazing 
management was the baseline scenario against which to assess SOC 
changes from each of the other scenarios. The grazing frequency sce-
narios increased the duration of the return period for each grazing event 
following the first event in a year. Since the last grazing events in these 
scenarios were scheduled to occur during the winter season after the 
adjustments, they were removed from all three grazing frequency sce-
narios (Table 2). The intensity scenarios simply reduced the AU for each 
grazing event and adjusted the amount of supplemental feed used in the 
wintertime to the new grazing intensity. The timing scenarios assumed 
the first two grazing events every year were delayed for a certain 
number of days, but the last three grazing event dates were not affected. 

Weather data for the most recent five years from our data source 
(2018–2022) were used to represent the current climate condition. 
Climate change and atmospheric CO2 concentration effects were not 
included in this study. 

To offer a more comprehensive insight into the potential effect of 
these grazing levers on SOC, MAOC, and POC storage, results were 
presented as the average of the three study sites with a standard devi-
ation (n = 3). For these scenarios, we report simulated SOC dynamics to 
a depth of 30 cm as this layer is where changes are expected to occur 
more intensively, while also aligning our study with the guidelines for 
national greenhouse inventories established by the Intergovernmental 
Panel on Climate Change (IPCC, 2006). However, further details about 
the predicted SOC dynamics at deeper soil layers are available in the 
supplementary material (Figures S3-S8). 

3. Results and discussion 

3.1. Model performance 

3.1.1. Perennial grass productivity 
We calibrated the perennial grass production parameters in MEMS 

2.34 to represent forage production from the three experimental sites 
across the southern U.S. Accurate prediction of plant production is 
critical for modeling SOC dynamics, as plant biomass (aboveground and 
belowground) provides the main C and N inputs to soil (Zhang et al., 
2021). In general, the model well captured the effect of N fertilization 
treatment and climate on forage production (Fig. 2). Statistical analyses 
of the calibration reveal an unbiased and relatively precise prediction of 
bahiagrass forage production (Fig. 2; BIAS = 9.51 g C m−2, RMSE =
65.57 g C m−2, RRMSE = 0.27, R2 = 0.72). The absence of detailed data 
on soil properties (e.g., mineral nitrogen, SOC, texture, and pH) and 
site-specific history in the published studies likely reduced the accuracy 
of our simulations. To approximate the soil nutrient levels during the 

experimental period, we had to simulate potential long-term historical 
management practices. Nevertheless, our model performance is similar 
to those of other models simulating perennial forages: the CROPGRO 
Perennial Forage model predicted harvested biomass of bahiagrass with 
RMSE of 72.9 g m−2 (31 g C m−2 assuming C content of 0.42) using six 
sites (Smith et al., 2023), while the DayCent model predicted produc-
tivity for a grazing system in Brazil with RRMSE of 0.37 and R2 of 0.69 
(Silva et al., 2022). 

3.1.2. Soil organic carbon stocks and distribution across soil depths 
The measured SOC stocks at the three AMP sites were similar down 

to 50 cm. However, below 50 cm, AMP-1 had SOC values 3.3 times 
higher than those observed at AMP-2 and AMP-3 (Fig. 3; Supplementary 
material – Table S2). The average SOC stocks across sites in 2022 were 
27.9, 7.4, 5.7, 3.7, and 4.4 Mg C ha−1 for 0–15, 15–30, 30–50, 50–70, 
and 70–100 cm, respectively, with no differences in SOC stocks observed 

Table 2 
Current management information and grazing levers (frequency, intensity, 
timing) and associated stocking densities and return periods used to simulate the 
projected scenarios.  

Management/ 
Lever 

Lever 
change 

Grazing event 
(DOYa) 

Stocking 
density (AU 

m−2) 

Return 
period (day) 

Current 
management 

– 84 0.0080  
125 0.0128 40 
186 0.0140 60 
287 0.0133 100 
320 0.0031 32 

Intensity −10% 84 0.0072  
125 0.0115 40 
186 0.0126 60 
287 0.0120 100 
320 0.0031 32 

−20% 84 0.0064  
125 0.0102 40 
186 0.0112 60 
287 0.0107 100 
320 0.0031 32 

−30% 84 0.0056  
125 0.0090 40 
186 0.0098 60 
287 0.0093 100 
320 0.0031 32 

Timing +5 days 89 0.0080  
130 0.0128 40 
186 0.0140 60 
287 0.0133 100 
320 0.0031 32 

+10 days 94 0.0080  
135 0.0128 40 
186 0.0140 60 
287 0.0133 100 
320 0.0031 32 

+15 days 99 0.0080  
140 0.0128 40 
186 0.0140 60 
287 0.0133 100 
320 0.0031 32 

Frequencyb +5 days 89 0.0080  
135 0.0128 45 
201 0.0140 65 
307 0.0133 105 

+8 days 92 0.0080  
137 0.0128 48 
204 0.0140 68 
311 0.0133 108 

+10 days 93 0.0080  
143 0.0128 50 
213 0.0140 70 
323 0.0133 110  

a DOY: day of year; AU: animal unit (500 kg). 
b There were four grazing events in these frequency scenarios compared with 

five events in the current management scenario. 
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between 2019 and 2022 at AMP-1 (Fig. 3; Supplementary material – 
Table S2). 

We used the SOC measured in the CG treatment in 2022 as an 
approximation of the SOC stocks before the implementation of AMP 
grazing in 2007 (Fig. 3). The CG farm has been managed under con-
ventional grazing for at least 50 years, suggesting that SOC had reached 
an equilibrium state (Conant et al., 2001; West and Six, 2007). Ac-
cording to information from the farmers, the AMP farm was also likely 

maintained under CG management for a long period before transitioning 
to AMP practices. Given the similar soil type, climate, and management 
of these sites, it is reasonable to assume these sites had similar levels of 
SOC prior to AMP implementation. Compared to SOC stocks measured at 
the CG sites, AMP-2 had greater SOC stocks in the 0–15 cm layer. On the 
other hand, AMP-2 and AMP-3 contained slightly less SOC in deeper soil 
layers compared with CG, but this pattern was not observed in AMP-1 
(Fig. 3). These differences in topsoil SOC stocks are similar to values 
observed in chronosequence data from other sites in the southeastern U. 
S. (Conant et al., 2004). However, it is important to note that these 
differences may also be partially attributable to SOC legacy effects if 
historical management and land-use across these sites were different. 

We tested the goodness of fit of the model to predict SOC dynamics 
by comparing simulated against measured SOC, POC, and MAOC stocks 
at different depths along the soil profile (Figs. 3–5). Overall, the model 
well captured SOC dynamics at the study sites following the grazing 
management change from GC to AMP. This is indicated by the minor 
differences between simulated and observed values along the soil profile 
(Fig. 3), especially in topsoil (0–15 cm), as indicated by the low BIAS and 
RRMSE values across sites (Table 3). Below 15 cm, the model tended to 
overestimate SOC irrespective of the study site (Fig. 3D-O; Table 3). The 
model predictions of SOC at depths below 50 cm were almost the same 
across the three sites, while the SOC stock measured at AMP-1 differed 
from that at the other two sites (Supplementary material – Table S2). 
Based on our knowledge, the measured soil properties (e.g., texture), 
which were also used as model input, could not explain the large vari-
ations in measured SOC stocks observed at these depths across the sites. 
The consistent similarity between the measured values in 2019 and 
those in 2022 at AMP-1 suggests no evidence of bias or poor accuracy in 
measurements (Supplementary material - Table S2). 

The overestimation in our model may be attributed to its simplistic 
structure, which fails to accurately represent the complex soil dynamics 
along the soil profile and under the given climatic conditions (Zhang 
et al., 2021). The grassland simulation conducted using MEMS 2.0 by 

Fig. 2. Comparison of simulated and observed bahiagrass (Paspalum notatum) 
forage production from three sites in southern U.S. At each site, production was 
measured under different fertilization regimes and across multiple years. 

Fig. 3. Simulated and measured bulk soil organic carbon (SOC) stocks at different depths (0–15, 15–30, 30–50, 50–70, and 70–100 cm) for three sites (AMP-1, AMP- 
2, AMP-3) under adaptive multi-paddock (AMP) management in southern Mississippi. Mean CG represents the mean of SOC from two sites (CG-1 and CG-2) under 
conventional grazing (CG) which had been paired to the AMP farm (sensu Mosier et al., 2021). Note that values of CG were measured in 2022 but used as estimates for 
2007 which was the starting point of AMP management. 2019: n = 25; 2022: n = 6. 
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Zhang et al. (2021) also showed substantial discrepancies between the 
simulated and observed values for certain soil layers at some sites. 
However, the overestimation by MEMS 2.34 of SOC in deep soil layers 

may also be attributed to our assumption in the spin-up simulation that 
sites were historically CG managed. We made this assumption in lieu of a 
reliable land-use history at these sites. Our overestimation of SOC levels 

Fig. 4. Simulated and measured particulate organic carbon (POC) stocks at different depths (0–15, 15–30, 30–50, 50–70, and 70–100 cm) for three sites (AMP-1, 
AMP-2, AMP-3) under adaptive multi-paddock (AMP) management in southern Mississippi. Mean CG represents the mean of POC from two sites (CG-1 and CG-2) 
under conventional grazing (CG) which had been paired to the AMP farm (sensu Mosier et al., 2021). Note that values of CG were measured in 2022 but used as 
estimates for 2007 which was the starting point of AMP management. 

Fig. 5. Simulated and measured mineral-associated organic carbon (MAOC) stocks at different depths (0–15, 15–30, 30–50, 50–70, and 70–100 cm) of three sites 
(AMP-1, AMP-2, AMP-3) under adaptive multi-paddock (AMP) management in southern Mississippi. Mean CG represents the mean of MAOC from two sites (CG-1 and 
CG-2) under conventional grazing (CG) which had been paired to the AMP farm (sensu Mosier et al., 2021). Note that values of CG were measured in 2022 but used as 
estimates for 2007 which was the starting point of AMP management. 
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in subsoil layers prior to the implementation of AMP grazing (before 
2007 in Fig. 3) would be explained if these sites had been cropped in the 
past. In that case, their deep SOC would likely not have recovered to the 
level of perennial systems as estimated in our spin-up as subsoil SOC 
changes are slower than at the surface (DeGryze et al., 2004). 

3.1.3. Particulate and mineral-associated organic matter stocks across soil 
depths 

The measured POC stocks did not significantly vary across the AMP 
sites (Supplementary material – Table S3) and were higher in the topsoil 
(0–15 cm) than at-depth (Fig. 4). Comparable values and trends were 
also noted for POC stocks at CG sites. Similarly, MAOC stocks were 
consistent across sites, with greater and more similar values in topsoils, 
and lower and more variable values in subsoils below 15 cm. Similar to 
SOC, MAOC stocks at 70–100 cm were higher at AMP-1 compared to the 
AMP-2 and AMP-3 (Supplementary material – Table S3). 

All simulated POC stocks fall within the standard deviation of the 
observed data, except in the 15–30 cm layer at the AMP-2 (Fig. 4). The 
simulated POC stocks were, on average, 2.1 times higher compared to 
the measured average values for the AMP sites in the topsoil (Fig. 4A–C). 
Conversely, below 15 cm, POC stocks were underestimated by approx-
imately 43% compared to the average of observed values across sites as 
indicated by the negative BIAS in Table 3. Total SOC recovery after 
physical fractionation is often lower than 100%, especially when using 
density (Poeplau et al., 2018). In our measured dataset, the average C 
recovery rate of POC + MAOC across sites and depth varied by 93.7 ±
16.5%, which has a higher average but also a higher standard deviation 
than the 90.0 ± 5.4% C recovery observed by Leuthold et al. (2024) 
using the same combined size and density fractionation procedure 
across cropland soils. This high variability in the recovery rate of the 
measured SOC fractions may have played a role in the discrepancies 
between the observed and simulated POC stocks (Fig. 4). 

Contrary to POC, the MEMS 2.34 model represented MAOC better in 
the topsoil (0–15 cm) than in deeper soil layers (Fig. 5). Following the 
same pattern observed for SOC, the model slightly underestimated 
MAOC stocks in the topsoil and overestimated them in deeper soil layers 
across the AMP sites (Fig. 5). The high agreement between predicted and 
observed values at 0–15 cm of depth was also supported by the statistical 
test results which indicated low values of BIAS and RRMSE (Fig. 5A–C; 
Table 3). Below 15 cm, simulated MAOC stocks remained consistent 
across sites but were overestimated by 9.9, 11.4, 8.2, and 8.9 Mg C ha−1 

at 15–30, 30–50, 50–70, and 70–100 cm, respectively, compared to 
observed values. Zhang et al. (2021) also observed discrepancies be-
tween measured and simulated MAOC for deeper soil layers at some 

simulated grassland sites using the MEMS 2.0 model. Subsoils are 
characterized by distinct biotic and abiotic factors governing organic 
matter formation and stabilization (Hicks Pries et al., 2023; Rumpel and 
Kögel-Knabner, 2011), yet the structure of controls of POC and MAOC 
dynamics at depth remain largely unknown (Cotrufo et al., 2021). This 
lack of mechanistic understanding and the scarcity of direct measure-
ments of SOC inputs and decomposition processes at depth represents a 
significant challenge for deep SOC stocks and fraction distribution 
modeling (Zhang et al., 2021). Given the importance of deep SOC 
storage, research should focus on experimental, monitoring, and 
modeling studies of SOC dynamics in deep soils. 

3.1.4. Predicted effects of grazing levers on SOC stocks 
The long-term simulation of the current management (baseline sce-

nario) suggests that AMP management can be a successful strategy to 
increase SOC in southern Mississippi pastures. Over a simulation period 
of 50 years, the model projected a nearly linear increase in SOC stocks by 
36% at an annual sequestration rate of 0.33 Mg C ha−1 yr−1 under 
maintained AMP grazing (Fig. 6). This value fits well within the range of 
the SOC sequestration rates reported by Bai and Cotrufo (2022) for 
improved grazing practices. 

The grazing levers tested in our simulations – frequency, intensity, 
and timing – resulted in relatively similar values of SOC stocks (ranging 
from 61.7 to 65.9 Mg C ha−1) and SOC sequestration rates (ranging from 
0.33 to 0.40 Mg C ha−1 yr−1) after 50 years (Fig. 6). Less frequent 
grazing and reduced grazing intensity were the primary contributors to 
increasing SOC stocks. However, the latter yielded the greatest SOC 
stocks (63.7–65.9 Mg C ha−1) with the most substantial increase 
observed when stocking density was reduced by 30%. In addition to 
promoting greater increases in SOC stocks, reducing the stocking density 
led to more rapid SOC sequestration compared to the other levers in our 
simulation. In the first 12 years, the SOC sequestered after decreasing 
stocking density by 10, 20, and 30% was 7.3, 9.2, and 10.8 Mg C ha−1, 
compared to a SOC sequestration of 5 Mg C ha−1 under current AMP 
management (Fig. 6B). Similarly, but to a lesser extent, SOC stocks 
increased with changes in grazing frequency (e.g., increasing the return 
period by 4, 8, and 10 days; Fig. 6A) compared to the current manage-
ment baseline. Conversely, changes in the timing of grazing by post-
poning by 5, 10, or 15 days, resulted in negligible changes to SOC stocks 
compared to the current management baseline (Fig. 6C). 

The resulting differences in SOC outcomes from changes to grazing 
management levers can be primarily attributed to changes in SOC inputs 
to soil. For instance, defoliation may increase plant quality by modifying 
plant composition (e.g., mobilization of carbohydrates from the reserve 
organ), and change allocation between roots and shoots. Additionally, 
removal of standing dead by defoliation may increase NPP, which may 
increase total SOC inputs in the long term (Supplementary material – 
Figure S9). In our grazing intensity scenarios, reducing grazing intensity 
resulted in increased NPP for the first few years (Supplementary mate-
rial – Figure S9). However, in the longer term, NPP was lower in the 
scenario with the greatest reduction in grazing intensity. This pattern 
aligns with field observations suggesting that defoliation may stimulate 
plant production via compensatory growth mechanisms in some cases 
(Stanley et al., 2024). Similar explanations can be used for the frequency 
scenarios where SOC values were very similar among the 4, 8, and 
10-day scenarios but different from the current management baseline. 
This suggests that the removal of the fall grazing event had a more 
pronounced effect on SOC dynamics than the variation in grazing 
frequency. 

It is important to highlight that these findings are specific to the 
environmental conditions and management practices represented in our 
model simulations. The relative importance of grazing frequency, in-
tensity, and timing may vary across different ecoregions, depending on 
factors such as climate, soil characteristics, plant community composi-
tion, and previous management (Stanley et al., 2024). The two scenarios 
that demonstrated the most significant potential SOC sequestration 

Table 3 
Statistical metrics calculated for the simulations of soil organic carbon (SOC), 
particulate organic matter (POC), and mineral-associated matter (MAOC) pools 
at distinct soil depths across the three AMP sites (AMP-1, AMP-2, and AMP-3) 
used for testing the MEMS model.  

Soil depth (cm) Statistical metric SOC POC MAOC 

Mg C ha−1 

0–15 BIAS −0.23 5.32 −1.80 
RMSE 1.41 5.44 1.94 
RRMSE 0.05 1.15 0.10 

15–30 BIAS 8.24 −0.48 9.89 
RMSE 8.39 0.58 9.99 
RRMSE 1.08 0.52 1.83 

30–50 BIAS 10.62 −0.23 11.39 
RMSE 10.80 0.33 11.45 
RRMSE 1.71 0.50 2.24 

50–70 BIAS 8.70 −0.19 8.23 
RMSE 9.09 0.20 8.31 
RRMSE 2.07 0.49 1.96 

70–100 BIAS 8.19 −0.29 8.93 
RMSE 9.22 0.36 9.57 
RRMSE 1.69 0.75 2.12  
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Fig. 6. Projected effects of grazing levers (frequency, intensity, and timing) on bulk soil organic carbon (SOC) stocks at 0–30 cm of depth in southern Mississippi. 
Shaded area represents the standard deviation of the mean (3 sites) for each scenario simulated. 

Fig. 7. Projected effects of grazing levers (frequency, intensity, and timing) on particulate organic carbon (POC) stocks at 0–30 cm of depth in southern Mississippi. 
The shaded area represents the standard deviation of the mean (3 sites) for each scenario simulated. 
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(changes in grazing frequency and intensity) in our study reduced the 
total forage intake (fewer grazing events with the same number of ani-
mals or the same number of grazing events with fewer animals). This 
implies that at the whole-farm level, animal production may be reduced, 
presenting a trade-off that needs to be carefully considered. However, 
the aim of this study was to demonstrate the potential of MEMS 2.34 in 
informing specific grazing management decisions, rather than specu-
lating on the broader impact that modifying grazing levers might have 
on SOC outcomes and trade-offs. We plan to address this broader impact 
in future research. 

Overall, our model confirmed that AMP management has high po-
tential to increase SOC stocks, with the rate of accrual being adjustable 
by tailoring grazing levers to the desired outcomes. An average SOC 
sequestration rate of 0.41 Mg C ha−1 yr−1 (0–50 cm) was reported across 
sites in Virginia (Conant et al., 2003), which is similar to the values 
obtained in our simulations. Even higher values (3.63 Mg C ha−1 yr−1; 
0–30 cm) were reported after conversion to AMP from conventional 
grazing in Texas (Wang et al., 2015). This highlights that the magnitude 
of SOC accrual varies across regions due to differences in climate, soil, 
management, and previous land-use (Don et al., 2011; Soussana et al., 
2004), with soils that have experienced greater losses showing higher 
rates of gain with improved management (Don et al., 2011). 

3.2. Predicted effects of grazing levers on POC and MAOC 

Under the current management baseline scenario, our simulations 
indicate that both POC and MAOC stocks are projected to increase in 
similar magnitude (POC 8.1 Mg C ha−1; MAOC: 8.3 Mg C ha−1) and at 
similar rates (POC 0.16 Mg C ha−1 yr−1; MAOC: 0.17 Mg C ha−1 yr−1; 
Figs. 7 and 8). However, they responded differently to simulated 
changes in grazing levers. Compared to the current management base-
line, increases in POC and MAOC stocks were limited to changes in the 
frequency and intensity levers, with the latter yielding the highest SOC 
stocks for both fractions. On the other hand, simulated changes in the 

timing of grazing events did not appear to impact POC and MAOC 
storage. 

Although both POC and MAOC stocks increased in our simulated 
scenarios, POC exhibited more pronounced differences compared to 
MAOC, especially during the initial decade (Figs. 7 and 8). During this 
period, changes in the frequency and intensity levers resulted in POC 
stocks on average 11% and 36% higher, respectively, than those under 
the current management baseline (13.4 Mg C ha−1) (Fig. 7A–B). Grazing 
intensity played a significant role in accelerating the accumulation of 
POC stocks in the short term, particularly when stocking density was 
reduced by 30%. Under this treatment, POC stocks at the end of the 
initial decade were similar to those under the current management 
baseline ~40 years later (19.8 Mg C ha−1) (Fig. 7B). 

In contrast to POC, the most noticeable differences in MAOC across 
grazing management manipulations were observed at the end of the 
simulated period (Fig. 8). However, MAOC stocks were only marginally 
higher compared to those in the current management baseline, irre-
spective of the simulated grazing management change. Overall, MAOC 
stocks ranged from 42.3 to 43.3 Mg C ha−1 across changes in the 
simulated frequency and intensity levers, which represents an increase 
of 0.8–3.3% in MAOC stocks compared to the current management 
baseline. These results contrast with the observations of higher relative 
increase of POC but higher absolute increase of MAOC under regener-
ative management in croplands (Prairie et al., 2023). There is an 
emerging understanding that POC and MAOC storage is controlled, in 
part, by different factors, with POC being controlled more by constraints 
on decomposition and MAOC more by constraints on productivity and 
mineral stabilization (Hansen et al., 2024). While our MEMS model has 
distinct pathways of formation for POC and MAOC, their turnover 
currently has similar constraints which may have reduced their possible 
differential response to AMP grazing levers. Given the push for 
multi-pool SOC management, by increasing both POC and MAOC pools 
(Angst et al., 2023), our model simulations indicate that AMP man-
agement may hold promise for enhancing both POC and MAOC pools in 

Fig. 8. Projected effects of grazing levers (frequency, intensity, and timing) on mineral-associated organic carbon (MAOC) stocks at 0–30 cm of depth in southern 
Mississippi. The shaded area represents the standard deviation of the mean (3 sites) for each scenario simulated. 
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the long term. 

3.3. Current limitations and future developments 

Model calibration and validation rely heavily on field observations, 
which are limited by data availability. Long-term field observations of 
SOC changes due to grazing management are scarce, particularly 
regarding AMP effects on SOC fractions (Stanley et al., 2024). Besides 
the lack of comprehensive measurements for all required model inputs, 
this scarcity of information hinders understanding of how grazing in-
fluences SOC over time and space, further limiting model development. 

Another limitation of our model is the lack of representation of N 
retention in the animal body (10–40% of total N intake for ruminants) 
(Calsamiglia et al., 2010). Additionally, urine is rapidly converted to 
ammonia under field conditions, but our model does not account for 
ammonia volatilization losses, which could be more than half of the 
excreted urine N (Haynes and Williams, 1993). The omission of these 
two processes could lead to an overprediction of the mineral N in the 
soil, consequently affecting the predictions of NPP and SOC. However, 
our grass biomass predictions were robust (Fig. 2), and SOC stocks were 
not consistently overpredicted (Fig. 3), suggesting a relatively minor 
impact of any potential overestimation of the mineral N addition by the 
grazing animals in our simulations. 

In the current model implementation, we were forced to treat feces as 
analogous to plant material with respect to decomposition processes, 
due to a lack of measured data on fecal decomposition dynamics. Feces 
and plant residues have distinct chemical compositions and physical 
properties, which can influence their decomposition rates and pathways 
(Haynes and Williams, 1993). Feces contain a higher proportion of 
easily degradable organic matter, such as undigested plant materials, 
microbial biomass, and metabolic by-products compared to plant resi-
dues, which certainly has a downstream influence on SOC and parti-
tioning among POC and MAOC. We invite experimental studies of 
manure contribution to POC and MAOC to address this knowledge gap 
and improve future model development. 

Another major challenge is accounting for the heterogeneity of plant 
communities and grazing patterns. Many grazing lands exhibit a diverse 
mix of plant species with varying functional traits (Wang et al., 2021), 
which can influence soil organic matter dynamics (Bai and Cotrufo, 
2022). Additionally, grazing animals can exhibit selective feeding be-
haviors, leading to spatially heterogeneous patterns of defoliation, 
nutrient redistribution, and soil compaction (Parsons and Dumont, 
2003). Trampling effects on standing dead fall and soil compaction are 
not accounted for in this version. The effect on standing dead fall has 
been either simulated as a very small percentage biomass transfer to the 
ground per animal or omitted in many models (Chen et al., 2018; Snow 
et al., 2014). The soil compaction and its impact on other soil processes 
(e.g., soil water) are intricate and challenging to simulate accurately due 
to the spatial complexities involved and the lack of comprehensive data 
for validation (Chen et al., 2018; Snow et al., 2014; Romero-Ruiz et al., 
2023). 

In the present study, we did not account for the potential effects of 
climate change and elevated atmospheric CO2 concentrations on future 
projections. These factors could significantly influence SOC dynamics 
and productivity in grazing lands (Briske et al., 2015; Morgan, 2005). 
Climate change could lead to alterations in temperature and precipita-
tion patterns, affecting microbial activity, decomposition rates, and 
plant growth. Additionally, elevated atmospheric CO2 can stimulate 
plant growth and enhance carbon inputs to the soil, potentially 
increasing SOC stocks when N is not limiting (De Graaff et al., 2006). We 
plan to incorporate these factors in future studies as well as the poten-
tially different temperature sensitivity of POC and MAOC (Georgiou 
et al., 2024). 

4. Conclusions 

We have presented the first biogeochemical model capable of pre-
dicting SOC and its POC and MAOC components along the soil profile in 
response to AMP grazing management on pastures. The model demon-
strated the capacity to properly simulate grass forage production and 
SOC dynamics down to 1-m depth on a grazed pasture in the south-
eastern U.S.A. Our future projection scenarios suggest that AMP grazing 
has the potential to substantially sequester SOC in these systems. 
Reducing grazing intensity showed the biggest effect on SOC seques-
tration, followed by reducing frequency; changing grazing time in our 
projections showed a minimal effect. However, there is a trade-off be-
tween feeding more animals and maximizing SOC sequestration. 

Further work is needed to test and validate the model’s performance 
across broader geographical regions and diverse grazing land ecosys-
tems. Additionally, future research will focus on improving the model’s 
representation of various processes and incorporating the potential ef-
fects of climate change. With these future developments, the MEMS 
model can serve as a valuable decision-making and policy-guiding tool 
for promoting sustainable grazing land management practices that bal-
ance productivity, SOC sequestration, and environmental conservation. 
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