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Abstract

Soil organic matter (SOM) provides vital services to humanity. Its preservation and fur-
ther accrual are key to sustain food production and avoid an irreversible climate crisis.
Here we present the processes and drivers of SOM formation and persistence within a
coherent state-of-the-art framework. We posit that SOM forms via two distinct pathways
depending on whether inputs are water soluble and/or easily solubilized entering the
soil as dissolved organic matter (DOM), or they are structural. These distinct inputs form
mineral-associated organic matter (MAOM), and particulate organic matter (POM),
respectively. Both these SOM fractions have plant and microbial components but in
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different proportions, with MAOM being more highly microbial. SOM persistence
will depend on microbial activity inhibition, the degree of its limitation and carbon
use efficiency, and microbial access constraints, primarily due to association to minerals
and occlusions in fine aggregates. Climate is the overarching control of SOM persis-
tence, also by affecting ecosystem traits, when persistence is driven by microbial
activity inhibition or limitation, largely responsible for POM storage. Soil geochemical
traits are the overarching control of SOM persistence driven by microbial access con-
straints, particularly in the subsoil, specifically controlling MAOM storage. SOM affects
soil properties (aggregation, porosity, and cation exchange capacity) which in turn
determine the soil’s capacity for functioning and ability to provide desired outcomes
including erosion and flood prevention, plant productivity, and climate mitigation.
The specific properties of SOM which influence its contributions to these functions
are discussed, with implications for SOM conservation and regeneration to promote
desired outcomes.

1. Introduction

Soil organic matter (SOM) is an incredibly important renewable

natural resource which supports many vital ecosystem services, from the

provision of food and fiber, to regulating climate and water cycles, reg-

enerating fertility, and supporting the immense biodiversity of soils (Smith

et al., 2015). By converting land for agricultural use over recent millennia,

but especially over the past 200 years, humanity has consumed large amounts

of SOM by accelerating its rates of mineralization and erosion over those of

organic matter inputs into the soil and soil formation, resulting in a global

estimated loss of 133Pg carbon (C) from the top 2m of soils (Sanderman

et al., 2017). However, this massive loss of SOM now presents the opportu-

nity for regenerating SOM, accruing the lost C back into the soil. Large-scale

soil C sequestration efforts are urgently needed, but they require concerted

action to adopt sets of measures adapted to local soil capacities for regener-

ation and relevant land management opportunities (Amelung et al., 2020).

These actionsmust be grounded in science and use our current understanding

of SOM formation, persistence, and functioning.

The scientific understanding of SOM has advanced tremendously in the

past decade, with many new conceptual frameworks (e.g., Cotrufo et al.,

2013, 2015; Daly et al., 2021; Lehmann and Kleber, 2015; Lehmann

et al., 2020; Liang et al., 2017; Schmidt et al., 2011), an increased availability

of large datasets on soils at continental to global scales (e.g., Harden et al.,

2017; Lawrence et al., 2020), and the development of a new generation

of soil biogeochemical models (e.g., Kyker-Snowman et al., 2020; Sulman

et al., 2017; Yu et al., 2020; Zhang et al., 2021). These new advancements
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must be tied together to achieve the desired transformative outcomes and

inform meaningful and effective SOM regeneration strategies (Blankinship

et al., 2018). In this chapter we synthesize the current understanding of

the processes and drivers regulating SOM formation and persistence in a

comprehensive framework. We use this understanding to describe SOM

properties and link them to SOM functions. We close by proposing how this

wealth of understanding and data can be applied to inform practices to preserve

existing SOM stocks in natural soils and build new SOM in managed soils.

Managed soils are the focus of most SOM studies and soil C sequestration

efforts. However, besides food and fiber production, all the vital ecosystem

services that SOM provides, such as climate regulation, water recycling,

and supporting soil biodiversity, are offered by both natural and managed

soils. Agricultural management usually leads to significant alterations to

SOM in terms of its stocks (Ogle et al., 2005), properties, and dynamics, thus

agricultural soils are not necessarily an optimal model to determine over-

arching SOM properties and drivers of SOM dynamics. We believe that

extending principles learned from studying SOM biogeochemistry in

natural systems helps to identify the best principles for SOM regeneration

in agricultural soils. Hence, we discuss SOM processes and drivers in general

terms, independent of specific ecosystems, aiming to provide a general

understanding of SOM, and a framework to guide future studies as well

as to inform sustainable management solutions.

SOM formation and stabilization processes take place at very small

scales, i.e., 1–1000μm (Kravchenko and Guber, 2017), yet their aggregated

outcomes manifest at larger scales which are the typical scale of observation.

It is imperative to understand these mechanisms on the scale in which they

take place, but also understand how they affect SOMprocesses and dynamics

at a scale which is relevant for monitoring and modeling, to enable accurate

forecasting of SOM changes (O’rourke et al., 2015; Paul, 2014). Our aim

here is to use current understanding of these small-scale processes to explain

emergent ecosystem-scale patterns.

In this chapter, we adopt the simple conceptualization of SOM being

primarily in the forms of particulate (POM), mineral-associated (MAOM),

and—as a much smaller proportion, i.e., 1–2%—dissolved organic matter

(DOM). These SOM forms are defined on the bases of their physical

properties, with MAOM being heavier (>1.6–1.85gcm�3) and/or finer

(<50–60μm) than POM, and DOM being water-soluble/extractable

(Lavallee et al., 2020). Aggregates are composite hierarchical and dynamic

structures (Tisdall and Oades, 1982) containing both POM and MAOM

(Christensen, 2001). Thus, they are to be considered as a “state” in which
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POM and MAOM can be found (Lavallee et al., 2020), and not as primary

fractions themselves. However, MAOM can also be considered as very fine

aggregates of organic matter and minerals, though for organo-mineral com-

plexes <60μm, the physical protection offered to very fine POM by occlu-

sion may be as strong as that offered by organo-mineral chemical binding

(Angst et al., 2017). We acknowledge that SOM is very complex and

heterogeneous both chemically and physically, and that research will

need to continue exploring its complexity. However, we adopt here this

simplified conceptualization based on a few procedurally defined physical

fractions (Fig. 1), since those fractions have been shown to form differently

Fig. 1 Overview of key differences between particulate (POM) and mineral-associated
organic matter (MAOM), including dominant formation pathways. Fragmentation and
translocation of structural litter residues primarily form POM, while direct association
(ex vivo) or microbe-mediated transformation and deposition (in vivo) of soluble and
low molecular weight litter or exudate compounds primarily form MAOM. Compared
to POM, MAOM tends to last longer in soil, has a higher density (when including the
minerals it is associated with), contains less chemically complex compounds on average,
and has a lower carbon-to-nitrogen (C:N) ratio.
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(Cotrufo et al., 2015; Haddix et al., 2016), respond differently to land use,

management, and climate changes ( Jilling et al., 2020; Lugato et al., 2021;

Rocci et al., 2021; Viscarra Rossel et al., 2019), and have different potentials

for accrual (Cotrufo et al., 2019).

2. Soil organic matter formation

2.1 Organic matter inputs
Soils receive organic matter primarily from plants, through the continued

release of exudates from plant roots, root tissue turnover, and deposition

of aboveground plant residues, in amounts that vary greatly in space and

time and depend on the ecosystem type (Table 1). Plants also transfer

organic C to their mycorrhizal symbionts, which in turn are among the

highest contributors of organic C to soil (Godbold et al., 2006). In man-

aged ecosystems, organic matter inputs to soil are highly controlled by

humans through crop selection, biomass harvesting, and organic amend-

ments, the latter of which can contribute significant amounts of C to

cropland soils (Table 1).

Fire, which is a natural disturbance and is also used as a management

practice, reduces the amount of C and nitrogen (N) returning to the soil

since a large fraction is combusted and lost in gaseous and particulate forms

to the atmosphere. Fire also modifies the physicochemical structure of

plant inputs to highly condensed polyaromatic organic matter, defined as

pyrogenic organic matter (PyOM), thus reducing SOM decomposability

(Bird et al., 2015; Knicker, 2011; Pellegrini et al., 2020). All of these

different inputs are composed of a broad array of chemical structures

(K€ogel-Knabner, 2002). Depending on their water solubility, energetic

return on investment to microbial breakdown, and soil environmental

properties, inputs will have different fates in the soil, affecting the resulting

SOM formation, turnover, and persistence (Cotrufo et al., 2015; Lehmann

et al., 2020; Schmidt et al., 2011; Waring et al., 2020).

Since the definition of SOM is vague and often refers simply to the

organic molecules within the soil (Paul, 2014), the formation of SOM can

be considered as starting from all of these inputs, which are defined as

SOM from the moment they are found in soil. However, after entering

the soil, organic matter inputs undergo a series of chemical and physical

transformations, with or without the contribution of faunal and microbial

processing, that together contribute to the formation and persistence of

SOM. During these transformations, most of the C input into the soil is
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mineralized to CO2 with a SOM formation efficiency that we define as the

amount of input-derived C retrieved in the soil vs the amount of C lost dur-

ing the decomposition of such input (Lavallee et al., 2018), typically ranging

between 3% and 33% (Castellano et al., 2015).

Table 1 Synthesis of published values for most common types of organic carbon inputs
to soils both from above- and below-ground for croplands, grasslands, and forest
systems.

Input ranges (gCm22 year21) References

Input type Croplands Grasslands Forests

Low High Low High Low High

Above-

ground

Leaves and

stems

20.60 500 9.90 151.14 90.0 860.0 1-19

Wood

residues

N/A N/A 19.8 176.2 16, 20-22

Farmyard

Manure

(managed)

50 300 N/A N/A 2, 9, 17,

23, 24

Green

Manure

176 800 N/A N/A 2, 24

Compost 185 862 N/A N/A 25, 26

Below-

ground

Root

exudates

16.6 61.3 0.003 60 42.4 120.4 8, 14, 18,

27-33

Root

turnover

55.4 92.0 3.00 400 80.0 839 8, 11, 13,

14, 17-19,

27, 34-36

Mycorrhizae/

hyphae

2426.6 124.5 5187.9 1228.0 6889.8 34, 37, 38

Microbial

biomass

114.3 938.0 18.0 2065.8 70 2508.0 11, 12, 18,

37, 39-42

When a range of input values was available, the lowest and highest values reported by the listed references
for each land use are presented. N/A not applicable.
Reference numbers refer to: 1.Berhongaray et al. (2019); 2.Bhardwaj et al. (2019); 3.Bowden et al.
(2014); 4.Clemmensen et al. (2013); 5.Dı́az-Pin�es et al. (2011); 6. Henry et al. (2008); 7.Jha et al.
(2014); 8.Johnson et al. (2006); 9.Kimura et al. (2011); 10. Koga and Tsuji (2009); 11.Leff et al.
(2012); 12.Liu et al. (2021); 13.Morais et al. (2013); 14.Shen et al. (2020); 15.Smyth et al. (2013); 16.
Villanova et al. (2019); 17. Wang et al. (2015); 18. Wilson et al. (2018); 19.Zatta et al. (2014); 20.
Aryal et al. (2014); 21.Gough et al. (2007); 22.Magalhães (2017); 23.Garcı́a-Palacios et al. (2018); 24.
K€atterer et al. (2011); 25.Jaiarree et al. (2014); 26.Maris et al. (2021); 27.Gougherty et al. (2018); 28.
Pausch and Kuzyakov (2018); 29. Pausch and Kuzyakov (2018); 30. Moscôso et al. (2018); 31. Aoki
et al. (2012); 32. Jones et al. (2009); 33. Sun et al. (2017); 34.Godbold et al. (2006); 35. Ventura
et al. (2019); 36. Neumann et al. (2020); 37. Liang et al. (2019); 38. Soudzilovskaia et al. (2015); 39.
Fisk et al. (2015); 40.Fontaine et al. (2004); 41. Laudicina et al. (2011); 42.Xiao et al. (2007).
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2.2 The SOM formation process
The SOM formation process was traditionally seen as beginning when

necromass, in the form of polymeric compounds in structural residues,

entered the soil. According to this view, the slower the residue decompo-

sition and the more residue remaining throughout the decomposition

process (Fig. 2), the more SOM is formed (Berg and Mcclaugherty,

2008). Higher lignin content and lower nutrient availability typically slow

the residue mass loss rate and increase the amount of residue mass remaining

partially undecomposed (i.e., the asymptotic value of litter mass loss) within

the time frame of typical decomposition experiments (e.g., <10 years;

Adair et al., 2008). Because of this finding, it was thought that the more

chemically recalcitrant (i.e., higher lignin and C:nutrient ratios) the organic

matter inputs, the higher the asymptotic value of litter mass loss and themore

SOM would be formed (Aber et al., 1990; Berg et al., 1984).

However, detailed chemical characterization of litter residues during

longer-term decomposition did not support the idea of selective pre-

servation of lignin in the remaining residues (Preston et al., 2009).

Additionally, lignin moieties extracted from soils did not prove to be more

resistant to degradation than other soil compounds (Dungait et al., 2008),

indicating that the abundance of chemically recalcitrant structures in organic

matter inputs to soil is not a main driver for long-term SOM persistence,

as we will discuss below. However, these residue structures contribute to

the formation of light POM in soils (Haddix et al., 2016), with light

POM typically being enriched in lignin compared to other SOM fractions

(Cambardella and Elliott, 1992; Christensen, 2001).

Fig. 2 Representation of the former view of plant residue contribution to soil organic
matter (SOM) formation. According to this view the higher the initial residue content of
lignin and lignin encrusted celluloses (i.e., lignified carbohydrates) the more mass
remaining and thus the more residue contribution to SOM formation.
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This view of structural residue of plant input decomposition as the dom-

inant input to SOM leads to the conception of the SOM formation process

as initiating from the POM fraction (Grandy and Neff, 2008; Lehmann and

Kleber, 2015), and neglects the large portion of organic matter inputs enter-

ing the soil in water-soluble forms (Kaiser andGuggenberger, 2000) through

exudation from living plants and leaching from decomposition residues on

the soil surface and rhizosphere. Exudation may represent 20–40% of

plant assimilated C (Canarini et al., 2019; Prescott et al., 2020), and we esti-

mated that 2–16% of initial aboveground plant residue C is lost as DOM

within the first year of decomposition, depending on the initial residue

chemistry (Fig. 3; Soong et al., 2015), while root residues were observed

to release about 2.4% of their C as DOM within the first 50 days of

decomposition (Uselman et al., 2007). Additionally, rain deposits small

amounts of DOM on the soil, estimated to be on average 1.5–3.0g organic
Cm�2 year�1 (Willey et al., 2000). Soluble inputs are typically considered

readily available substrates for microbes; they are characterized by fast

turnover, and may even accelerate the loss of native SOM by increasing

microbial activity, thus priming SOM mineralization (Kuzyakov, 2010),

or by liberating organic matter bonded to minerals ( Jilling et al., 2018;

Keiluweit et al., 2015). However, a systematic review of the effects of fresh

organic matter inputs on SOM showed higher replenishment of SOM

than its loss by priming or organo-mineral destabilization, with an average

new SOM formation corresponding to 32% of the added C (Liang

et al., 2018).

Multiple studies in contrasting ecosystems are confirming that low

molecular weight C inputs as DOM are efficient precursors of SOM

(e.g., Lynch et al., 2018; Strickland et al., 2012). In particular, DOMderived

from above ground residues is expected to contribute to the formation of

SOM in the topsoil, while DOM derived from exudates and root litter

decomposition would contribute to SOM formation at depths (Gmach

et al., 2020). However, DOM inputs are usually not accounted for during

decomposition studies, which typically use the mass remaining in litter

bags as a measure of residue contribution to SOM formation, significantly

biasing the study of SOM formation (Cotrufo et al., 2009). We thus stress

the need to better quantify the fluxes of DOM into the soil during residue

decomposition and root exudation, and their net contributions to SOM

formation.

The two-pathway model of SOM formation (Cotrufo et al., 2015) rec-

onciles the differing views regarding the role of litter chemistry for SOM
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formation by suggesting that lowmolecular weight, soluble inputs and poly-

meric, structural inputs each contribute primarily to the formation of differ-

ent SOM components (Fig. 4). In particular, DOM from water-soluble

inputs is a primary precursor of MAOM formation, while POM is formed

Fig. 3 Residue-derived carbon loss as carbon dioxide (CO2), dissolved organic carbon
(DOC), and residue mass loss during decomposition of above ground residues from dif-
ferent plant species and pyrogenic organic matter (PyOM), during a one-year laboratory
incubation. Carbon lost as DOC represented 21–63% of carbon losses as CO2. Figure is
reused with permission from Soong, J.L., Parton, W.J., Calderon, F.J., Campbell, N. &
Cotrufo, M.F., 2015. A new conceptual model on the fate and controls of fresh and pyrolized
plant litter decomposition. Biogeochemistry.
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primarily from the polymeric structural residues of plant, animal, and

microbial residues, in differing proportions depending on the ecosystem.

Both fractions have been shown to contain plant and microbial-derived

compounds. However POM is believed to be dominated by plant-derived

compounds, while MAOM by microbial-derived compounds based on

differences in their chemical structures, stoichiometries, and isotopic enrich-

ments (Grandy and Neff, 2008). While the relative contribution of plant-

and microbial-derived compounds in POM and MAOM is still hard to

Fig. 4 Conceptual representation of the two-pathway model of SOM formation from
above ground plant residue decomposition (Cotrufo et al., 2015). Top panel: As decom-
position proceeds, water soluble are lost first in higher proportion, then free celluloses
and hemicellulose are depolymerized, while at a later decomposition stage the acid
unhydrolyzable (AUR) fraction, considered a proxy for lignin and lignin encrusted cel-
luloses, is lost. This time sequence is proportional to the time it takes a residue to reach
full mass loss (i.e., months to years). Bottom panel: The loss of water-solubles and free
celluloses and hemicelluloses is expected to produce dissolved organic matter (DOM)
and result in the formation of MAOM, via direct adsorption or after microbial assimila-
tion, and necromass association to minerals. The remaining fibrous residue is expected
to enter the soil via physical transfer, and to result in the formation of particulate organic
matter (POM). Redrawn after Cotrufo, M.F., Soong, J.L., Horton, A.J., Campbell, E.E.,
Haddix, M.H., Wall, D.L., Parton, W.J. 2015. Soil organic matter formation from biochemical
and physical pathways of litter mass loss. Nat. Geosci.
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quantify, more recently it has been proposed that MAOMmay have roughly

equal contributions from plant and microbial compounds (Angst et al.,

2021). In support of this, Almeida et al. (2018) traced the fate of the acid

unhydrolyzable fraction of plant residues (often used as a proxy for lignin) in

soils, and observed that it made a significant contribution both to light POM

(37%), and MAOM (31%). This contrasts with the findings of Haddix et al.

(2016), who also used isotope tracing to show that only the water-soluble met-

abolic components of plant material contributed to MAOM formation. More

studies characterizing the chemical structure of POM andMAOM and tracing

their sources to compounds of plant or microbial origin are required to better

understand the specific mechanisms of formation and microbial vs plant con-

tribution of these two main SOM components.

We suggest studies on POM and MAOM formation consider organic

matter inputs entering the soil as both structural and DOM. The relative

proportion of structural and DOM inputs into the soil will depend

on—besides root exudation—the relative contributions of residue inputs

to the soil through fragmentation vs leaching, which in turn depend on

the chemical composition of the residues, the physical environment where

residue decomposition occurs, and the decomposer community structure

and activity (Swift et al., 1979). The movement of DOM into the soil is

controlled by vertical water flow and interactions with minerals and

microbes (Kaiser and Kalbitz, 2012). DOM contributes to the formation

of MAOM via different pathways; it can associate directly to mineral

surfaces, or it can be assimilated by microbes and converted to microbial

extracellular and necromass compounds which then associate with mineral

surfaces (Kleber et al., 2015). Liang et al. (2017), respectively, defined these

as the ex-vivo and in-vivo pathways ofMAOM formation. On the other hand,

the processes that control POM incorporation into the mineral soil, from

root turnover to vertical transport of above ground residues mostly via bio-

turbation, are still poorly defined ( Johnson et al., 2014), often hindering the

accuracy of models representing them (Zhang et al., 2021). The processes of

residue fragmentation, and the incorporation and vertical transfer of POM

as well as their biotic and abiotic drivers should be studied across different

soil and ecosystem types.

2.3 Controls of SOM formation
While the conceptualization of SOM into POM and MAOM is becoming

common (e.g., Chen et al., 2020; Daly et al., 2021; Jilling et al., 2020), our

understanding of the factors that control their specific formation is limited.
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Organic matter input chemistry and N levels have been proposed as major

controls on the formation of these SOM fractions. Inputs richer in water-

soluble compounds and with low C/N ratios would promote the formation

of MAOM both through direct sorption of water-soluble compounds and

efficient microbial transformation of the inputs (Fig. 5; Cotrufo et al., 2013;

Kallenbach et al., 2016; Liang et al., 2017). Similarly, N additions would

stimulate efficient microbial processing of organic matter including POM,

leading to MAOM accrual, unless it generates acidification, limiting micro-

bial activity and causing the accumulation of undecomposed POM (Averill

and Waring, 2018).

Consistent with these hypotheses (Fig. 5), structural residue inputs with

high lignin and low N content were shown to promote the formation of

SOM in the light POM (<1.7g cm�3, >53μm) and coarse MAOM

(>1.7g cm�3,>53μm), whereas animal manure inputs with low C/N pro-

moted fine MAOM (<53μm) formation in Canadian agricultural soils

(Samson et al., 2020). This study supports the two-pathway model of

SOM formation (Cotrufo et al., 2015), but also points to the role of coarse

MAOM (sometimes called “heavy POM”) as a minor but important

fraction for the formation of SOM (Samson et al., 2020), which is an area

of SOM research requiring further investigation.

Fig. 5 Conceptual representation of soil organic matter formation processes and their
primary controls, including the relative formation of dissolved (DOM) and particulate
organic matter (POM) from plant inputs (1), the relative formation of mineral-associated
organic matter (MAOM) through in vivo and ex vivo pathways (2), and the relative
formation of MAOM and POM from microbial products (3).
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The soil biota also control SOM formation (Coleman et al., 2004).

While most soil C and N transformations are generalist functions, different

soil organisms vary in their functional roles and impacts on SOM processes

(Crowther et al., 2019). Specifically, higher fungal-to-bacterial abundance is

associated with higher efficiency of SOM formation from plant residue

decomposition (Malik et al., 2016). Since fungal-to-bacterial ratios are

modulated by mycorrhizal associations, these are expected to affect the for-

mation of SOM and its relative distribution between POM and MAOM

(Fig. 5). Bacteria typically dominate SOM transformation processes in

systems characterized by arbuscular mycorrhiza fungal (AMF) associations,

while fungal-to-bacterial ratios are higher in systems with ectomycorrhiza

fungal (EMF) associations. Ectomycorrhizas were shown to reduce

SOM mineralization to CO2 and promote overall C storage (Averill and

Hawkes, 2016; Averill et al., 2014), predominantly in the POM fraction

(Craig et al., 2018). On the other hand, systems dominated by AMF favored

MAOM formation due to more rapid decomposition and microbial residue

production (Craig et al., 2018). Many more studies are required to test these

hypotheses at scale. However, they have so far found support in continental

scale observations of the distribution of POM and MAOM in European

broadleaved forests (Cotrufo et al., 2019). Soil meso- and macrofauna

also play several major roles involved in SOM formation, from accelerating

residue fragmentation and incorporation of POM into the soil (Soong et al.,

2016), as well as its transport to depth (Frouz, 2018), to altering the amount

and chemistry of root inputs as well as the biomass, turnover, and diversity

of the microbial community (Filser et al., 2016, and references therein).

These processes have yet to be quantified across different soils and ecosys-

tems, and this is certainly an area that deserves more quantitative studies

at scale.

Mechanistically, the biotic role in MAOM formation has also been

suggested to depend on the point of entry of the DOM (Figs. 5 and 6), with

DOM leaching from aboveground residues having a lower probability of

being assimilated by microbes than DOM entering directly belowground

through the rhizosphere (Sokol et al., 2019b), where microbial abundance

is 2–20 times higher than in the bulk soil (Kuzyakov and Blagodatskaya,

2015). Thus, MAOM formation from aboveground inputs would be mostly

controlled by the availability of mineral surfaces, while MAOM formation

from rhizosphere inputs would be predominantly controlled by the effi-

ciency of microbial transformation (Fig. 6; Sokol et al., 2019b). This

hypothesis regarding the dependency of biotic vs mineral control on

13Soil organic matter formation, persistence, and functioning



Fig. 6 Conceptual representation of the point of entry hypothesis (Sokol et al., 2019b). When low molecular weight (LMW) C inputs enter the
soil from the microbial-rich rhizosphere (A), mineral-associated organic matter MAOM is expected to form preferentially via the in vivo path-
way, because C inputs have a higher probability of being assimilated and transformed by microbes than encountering a mineral surface.
Conversely, when LMW C inputs enter the bulk soil (B), MAOM is expected to form preferentially via direct sorption due to the higher relative
abundance of mineral surface vs microbial cells in the bulk soil. Also, more C is expected to leach to depth when inputs occur in bulk vs
rhizosphere soils. Reused with permission from Sokol, N.W., Sanderman, J., Bradford, M.A., 2019b. Pathways of mineral-associated soil organic
matter formation: integrating the role of plant carbon source, chemistry, and point of entry, Glob. Chang. Biol. 25, 12–24.



MAOM formation on the point of entry of organic matter inputs to soil

has found some empirical support (Sokol and Bradford, 2019), but it

requires additional testing in the field. With further support, it can have

significant impact in driving management decisions regarding residue

placement and prioritizing above vs belowground inputs. For example, field

studies looking at the SOM formation efficiency of residue placed on the

soil surface or incorporated within the soil have observed higher efficiency

of both POM and MAOM formation when residue is incorporated within

the bulk mineral soil (Leichty et al., 2021; Mitchell et al., 2018).

Additionally, live roots were shown to accelerate both the decomposition

of litter residues (Subke et al., 2004) and soil organic matter, as well as to

enhance the formation of stable SOM in forest ecosystems (Adamczyk

et al., 2019). Surely these findings highlight the importance of studying

SOM formation in an intact system with live roots and rhizosphere commu-

nity, enabling the in vivo transformation of above and below ground inputs.

Since proposed by Rasse et al. (2005), roots have been proven to be the

major contributor of C to soil (Avera et al., 2020; Sokol et al., 2019a).

However, our understanding of SOM formation from root inputs is typi-

cally derived from experiments following the fate of root residues in the bulk

soil (e.g., Bird and Torn, 2006; Fulton-Smith and Cotrufo, 2019).

Additionally, root C inputs besides forming new SOM, can also destabilize

the existing SOM, requiring a study framework that takes into account both

formation and turnover (Dijkstra et al., 2021). More rhizotron facilities

enabling the study of SOM formation in vivo through root exudate inputs

and root turnover, as well as the study or their impact of SOM turnover,

are required to improve our mechanistic understanding of root C inputs

for SOM accrual.

Climate, soil texture and initial C content have also been shown to play a

key role in the formation of new SOM (Haddix et al., 2020). Specifically,

across a climatic and soil texture gradient in Canada, MAOM formation was

promoted under higher mean annual precipitation and lower sand content,

possibly because of higher residue C loss via leaching and mineral surface

availability for the formation of organo-mineral associations. On the other

hand, new occluded POM formation was promoted by higher initial soil C

content, possibly indicating higher aggregation. Macroaggregates, in fact,

promote the formation of POM protected inside microaggregates, as well

as of C accumulation in MAOM (Fig. 7; King et al., 2019).

Climate and initial C content controls on new SOM formation were

observed at a large scale analyses in Australia (Luo et al., 2017). This study
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also showed amounts of C inputs explaining the largest proportion (27%) of

new total organic C accrued in soil over time (Luo et al., 2017). Amount

and chemistry of specific C compounds entering the soil clearly drive

SOM formation in controlled experiments (Oldfield et al., 2018a).

However, the relationship between inputs and new SOM formation is

not straight forward when studied in the field, as demonstrated by the

Detritus Input and Removal Treatment (DIRT) project (Lajtha et al.,

2014a). Increased litter addition both above and below ground do not

necessarily result in increases in SOM formation, while extant SOM storage

can be highly impacted by removal of litter inputs. Within the SOM pools,

POM appeared to be more responsive than MAOM to increased litter

inputs even after 50 years of litter manipulation, while both POM and

MAOM were vulnerable to losses from litter removal (Fig. 8; Lajtha

et al., 2014b). Besides not being linear, the response of SOM to litter input

manipulation is also system-dependent (Crow et al., 2009). These results

challenge the long-standing vision of SOM turnover as a first order process

( Jenkinson et al., 1990) and highlight the need for a broader investigation

across different ecosystem domains of the effect of organic matter inputs

and input limitations on SOM formation and storage, including between

POM and MAOM (Cotrufo et al., 2021).

Fig. 7 Conceptual representation of the relationships between soil organic C amounts,
their presence in mineral-associated (MAOM) and particulate (POM) organic matter,
and distribution between macroaggregates and free and occluded micro-aggregates.
These relationships suggest lower turnover of macroaggregates stimulates the accu-
mulation of soil organic C and its stabilization via occlusion in macro- and micro-
aggregates. Reused with permission from King, A.E., Congreves, K.A., Deen, B.,
Dunfield, K.E., Voroney, R.P., Wagner-Riddle, C., 2019. Quantifying the relationships between
soil fraction mass, fraction carbon, and total soil carbon to assess mechanisms of physical
protection. Soil Biol. Biochem. 135, 95–107.
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Fig. 8 Soil organic carbon concentration (mg C/g soil) in soil organic matter density fractions at Noe Woods (A), Wingra Woods (B), Curtis
Prairie 1 (C), and Curtis Prairie 3 (D) plots which received different litter inputs for 50 years as part of the DIRT experiment. Using our framework
(Figs. 1 and 5), density fractions<1.85g cm�3 can be considered POM and density fractions>1.85g cm�3 can be considered MAOM. Reused
with permission from Lajtha, K., Townsend, K.L., Kramer, M.G., Swanston, C., Bowden, R.D., Nadelhoffer, K., 2014b. Changes to particulate versus
mineral-associated soil carbon after 50 years of litter manipulation in forest and prairie experimental ecosystems. Biogeochemistry, 119, 341–360.



3. The persistence of soil organic matter

3.1 Time metrics of soil organic carbon persistence
Possibly the most studied question regarding SOM has been: What is the

SOM turnover time? This question specifically refers to the turnover

time of C in soil, which Torn et al. (2009) defined as the time it would take

for a C pool to be depleted in the absence of new inputs. However, the

concept of turnover time has not been used or measured consistently, and

it often overlaps with other concepts like age, residence time, or transit

time. Sierra et al. (2017) provided an elegant clarification of all these con-

cepts and advised on appropriate calculations for these different metrics

depending on the state of the system where they are applied. We embrace

their suggestion to focus on the concepts of age to describe the time elapsed

from the moment the particle entered the system to a generic time t, and

transit time to describe the time it takes a particle to transit the system (or

the age at which it leaves the system), since these are simple terms, and inde-

pendent of assumptions regarding the systems (Sierra et al., 2017). Bulk

soil C as well as any soil C fractions have age distributions and mean ages

which describe the distribution of times and the average time, respectively,

since SOM C molecules have entered the pool of interest. Similarly, the

transit time will have a distribution and an average (Fig. 9; Sierra et al.,

2017). However, this may differ from that of the age, since the majority

of C transiting the system has a fast transit time, while the average soil C

age is typically much older, because of the contribution from evenmillennial

old C (Shi et al., 2020).

Radiocarbon (14C) is arguably the most powerful tool to determine

SOM age and transit time (Trumbore, 2009) and soil 14C data are now

available online at a global scale, for bulk soils and different SOM fractions,

and along the soil profile in the International Radiocarbon database (ISRad;

Lawrence et al., 2020). Globally, gross soil C age varies across ecosystems

and soil depths (Balesdent et al., 2018; Mathieu et al., 2015). Using the

ISRaD database, Shi et al. (2020) estimated the mean C age of global

soils, obtaining an overall value of 4830�1730 years, with topsoils

(0–30cm) being younger (1390�310 years) than subsoils (30–100cm;

8280�2820 years). The youngest soil C is in tropical topsoils (390 years)

while the oldest is in tundra subsoils (16,890 years). However, these averages

are skewed by the fact that most of the C in soil is relatively young
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(Fig. 10), while smaller amounts of C have 14C ages of 25,000 years and older

(Shi et al., 2020), supporting the suggestion that tracking fluxes and transit

times rather than ages of C pools may offer a better approach to resolve the

probabilistic nature of the fate of C molecules in soils (Waring et al., 2020).

Within a soil, different SOM fractions have different 14C ages, with the

light POM fraction typically being the youngest and having mean ages

that increase as it becomes occluded in aggregates (Schrumpf et al.,

2013). However, old ages can also be observed in the light POM fraction

when it is contributed by PyOM (Lavallee et al., 2019). The MAOM

fraction typically has older 14C mean ages, and a wider distribution, than

POM (Fig. 10), with the acid unhydrolyzable portion of MAOM being

the oldest (Schrumpf et al., 2021).

Fig. 9 Conceptual representation of pool age, system age, and transit time. The age of
each particle or C molecule in the systems is represented by a clock. A soil system (largest
box) can be conceptualized as a set of C pools (smaller boxes) which transfer C molecules
among each other (arrows), with an input flux in which molecules enter with age¼0.
At any given time, t, C molecules in each pool have different ages, generating a
pool-age distribution with a corresponding mean pool age. Similarly, at any given time
t, the entire soil system of C molecules will have a system age distribution with a
corresponding mean system age. C molecules in the output flux will also have different
ages, with their transit time representing the age at which they leave the system. The out-
put flux will have a distribution of transit times and a mean transit time. Redrawn after
Sierra, C.A., M€uller, M., Metzler, H., Manzoni, S., Trumbore, S.E., 2017. The muddle of ages,
turnover, transit, and residence times in the carbon cycle. Glob. Chang. Biol. 23, 1763–1773.
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Besides radiocarbon, SOM diagnostic times have also been studied using

stable isotope (13C) tracing, CO2 mineralization (mostly in laboratory incu-

bations), and by simply relating C stocks in SOM to C inputs with estimates

often varying depending on the approach used (Paul, 2016, and reference

therein). Despite some C can stay in soil for millennia, the idea of an inert

soil C pool ( Jenkinson et al., 1987) has been dismissed (Schmidt et al., 2011),

and old 14C ages have beenmeasured in active microbial biomass biomarkers

in deeper soils (Rethemeyer et al., 2005). These findings support the idea

that no C pool in soil is passive, but some C atoms may be recycled in

the subsoil through microbial activity (Rumpel and Kogel-Knabner,

2011), without escaping the system and causing the fractions they reside

in to appear to be passive if this recycling is not taken into account.

Additionally, in soils developed from sedimentary parent material, older
14C ages may be due to contributions of 14C from inactive, geogenic C

(Rumpel and Kogel-Knabner, 2011).

While accurate quantification of the diagnostic time metrics of C in soils

is key to quantify SOM persistence, it may not aid in the understanding of

the mechanisms of SOM stabilization resulting in such persistence. Thus, we

Fig. 10 Density distribution ofΔ14C values for particulate (POM) andmineral-associated
organic matter (MAOM) as defined by size or density using 53μm and 1.85g cm�3,
respectively, as cutoffs. Lines showmean values for POM (orange) andMAOM (maroon).
Data are for all reported soil fraction from the International Soil Radiocarbon Database
(ISRaD), v1.9.10.2021-04-26 (Lawrence et al., 2020).
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believe that focusing exclusively on determining soil C age and transit times

or defining SOM pools by their turnover times (Paul et al., 2001) does not

necessarily help in predicting how SOMdynamics may change in the future.

For example, two soil C molecules could have similar ages but be subject

to different mechanisms of stabilization, as defined below. Thus, their ulti-

mate transit times in the soil will vary depending on the specific response of

their individual mechanism of stabilization to future environmental condi-

tions. Understanding the mechanisms of formation and stabilization of

SOM and their sensitivities to disturbance and environmental changes, in

addition to representing SOM pools as defined by their formation and

stabilization mechanisms are of critical importance to study and predict

future SOM dynamics. Quantifying the 14C ages of these mechanistic

SOM fractions (e.g., DOM, POM and MAOM) at scale (Lawrence et al.,

2020) will further help elucidating their properties and behavior.

3.2 Mechanisms of soil organic matter stabilization
Soil organic matter can be defined as stable when its outflux rate is low

relative to the pool size. Organic C flows out of soils by aerobic SOM

mineralization resulting in CO2 efflux to the atmosphere, anaerobic fermen-

tation resulting in CH4 and other volatile organic C emissions, and DOM

leaching. Given SOM mineralization (estimated globally at � 60 Pg C

year�1) is over an order of magnitude larger flux than the other soil C

outfluxes (Schlesinger and Bernhardt, 2013), the mechanisms controlling

it can be considered the main mechanisms controlling SOM stabilization

at global scale. SOM mineralization is carried out by the soil biota, and

overwhelmingly by the catabolic activity of the microbial community.

Consequently, the mechanisms controlling microbial respiration are ulti-

mately responsible for SOM stabilization. There have been several descrip-

tions of SOM stabilization mechanisms (e.g., Jastrow and Miller, 1998;

Trumbore, 2009). Here we rearrange previous concepts under three main

types of SOM stabilization mechanisms: microbial physiological inhibition;

microbial metabolic limitation, and microbial access constraint. We define physio-

logical inhibition as conditions inducing overall microbial inactivity or

dormancy; metabolic limitation as conditions modulating microbial catab-

olism, including C use efficiency (CUE); while access constraint refers to

the physical barriers for microbes or their exoenzymes to reach and metab-

olize a SOM substrate (Fig. 11). Microbial physiological inhibition and

metabolic limitation can be considered as spanning a continuum, in which
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when conditions that determine inhibition pass a threshold allowing

microbes to break dormancy and become active, the rate of SOM miner-

alization will become controlled by the factor(s) limiting microbial activ-

ity. On the other end, if SOM is protected from microbial access by spatial

impediments, it will be less sensitive to microbial metabolic limitations.

Microbial physiological inhibition and spatial constraint are responsible

Fig. 11 Schematic representation of the mechanisms of stabilization of soil organic
matter. Microbial physiological inhibition (MPI) is caused by freezing temperatures or
lack of oxygen, and results in extremely low microbial processing of plant inputs, which
thus accumulate largely as particulate organic matter (POM) and can persist for
millennia, forming C-rich organic soils characterized by low C:N ratios. This mechanism
is extremely sensitive to climate change and drainage of waterlogged soils. MPI transi-
tions to microbial metabolic limitation (MML) when conditions still limit but do not
entirely inhibit microbial activity. Thus, MML is controlled by the availability of energy,
nutrients, andmoisture tomicrobes. High levels of MML result in higher accumulation of
soil organic matter (SOM) in POM, higher soil C:N, relatively low SOM persistence (years-
decades), and high SOM vulnerability to changes that may release MML. Microbial
access constraints (MAC) limit the access of microbes and their enzymes to SOM.
Since organo-mineral associations and protection within small pores are the main
spatial constraints on microbial access to SOM, MAC is controlled by the soil mineral
capacity to form strong organo-mineral bonds (i.e., Al, Fe, Ca, and available reactive sur-
face area), and by pore space and moisture. Most of the SOM protected by MAC is in
MAOM, which may persist in soils for up to millennia and is generally less vulnerable
to environmental changes. In soils with lower overall SOM stocks, where available
SOM is likely have undergone microbial processing, MAC is the prevailing mechanism
of SOM persistence.
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for SOM persistent on the long term (century to millennia), while micro-

bial metabolic limitation controls short-term SOM persistence (years to

decades).

3.2.1 Microbial physiological inhibition
The most and oldest C in soil is stored in cold and wet conditions (Shi et al.,

2020), because of microbial physiological inhibition to decomposition

due to freezing temperatures and lack of oxygen. Thus, microbial inhibi-

tion could be considered the most important mechanism of SOM stabiliza-

tion at the global scale. While soil microbes can stay viable and active at

sub-zero temperatures and in low oxygen microsites, their activity is

extremely low under these conditions (Clark and Kemper, 1967; Steven

et al., 2006). Similarly, under severe drought microbes cease their activity

and may dehydrate, enter a state of dormancy, or even die (Schimel,

2018). However, dormant microbes can return active when the stress is

removed (Lennon and Jones, 2011). Microbial physiological inhibition

is, therefore, a mechanism of stabilization very vulnerable to change

(Fig. 11), with aerating of gleysols and warming of gelisols activating

microbes to mineralize the large soil C stores of these soils (Feng et al.,

2020; Minick et al., 2019). With the exception of dry soils where plant stress

precedes microbial stress (Schimel, 2018) resulting in low POM accumu-

lation (Cotrufo et al., 2021), the inhibition of microbial decomposition

results in the persistence of soil C primarily as light POM, largely of plant

origin (Angst et al., 2018).

3.2.2 Microbial metabolic limitation
In ecosystems where climate and oxygen do not inhibit microbial activity,

they can still limit it. In this sense, temperature and moisture (including wet,

oxygen-limited conditions) can be considered hierarchically the first con-

trols of microbial activity, and therefore of SOM persistence (Cotrufo

et al., 2021), as we will discuss in the section on controls below. Besides

climate, microbial metabolic limitation refers primarily to energy and nutri-

ent limitations. These limitations control both the rate and efficiency of

SOM mineralization, with higher rates of microbial activity but also

higher CUE when microbes utilize molecules with high energetic return

on investment (i.e., low C:O or C:H ratios) and nutrient availability that

matches microbial stoichiometric demand (i.e., low C:nutrients ratios). In

the longer term, CUE is deemed more important than modulations in

microbial activity rates in determining SOM persistence, thus labile organic
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matter inputs (i.e., low C:O, and C:nutrient ratios) were proposed and

observed to be the main precursors for persistent SOM (Cotrufo et al.,

2013; Kallenbach et al., 2016). Energy limitations are controlled by the

interplay of oxygen availability and substrate chemistry, with molecules

characterized by low nominal oxidation state of C (e.g., aliphatics) becom-

ing selectively preserved under low oxygen availability (Fig. 12; Keiluweit

et al., 2016). Besides wetlands, oxygen limitation is also an important

mechanism of soil C persistence in microsites of highly structured mineral

soil, where organic matter occlusion in aggregates limits the oxygen avail-

ability required for its microbial utilization (Keiluweit et al., 2017).

In aerobic environments, limitation of microbial activity by energy and

nutrient shortages is ascribed to the biochemical recalcitrance and/or chem-

ical diversity (sensu Lehmann et al., 2020) of the SOM. While biochemical

recalcitrance has long been considered a main driver of SOM persistence, its

importance has more recently been dismissed (Dungait et al., 2012; Kleber

et al., 2011; Marschner et al., 2008). Only highly condensed aromatic

organic matter structures, such as those in PyOM and biochar, are found

to be selectively preserved in soils for centuries (Lavallee et al., 2019;

Schmidt et al., 2011), while free POM stabilized only by biochemical recal-

citrance rarely exceeds 50 years of age (Marschner et al., 2008). The current

view is that all polymeric structures can be progressively broken down by

exoenzymes in the soil matrix until they are reduced to soluble monomers,

lipids

+ persistence under anaerobic conditions
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Fig. 12 For a variety of most common soil organic matter compounds, nominal oxida-
tion state of carbon (NOSC) values are estimated based on their approximate positions
in Van Krevelen diagrams. Their persistence under anaerobic conditions increases as
their NOSC decreases. Reused with permission from Keiluweit, M., Nico, P.S., Kleber, M.,
Fendorf, S., 2016. Are oxygen limitations under recognized regulators of organic carbon
turnover in upland soils? Biogeochemistry, 127, 157–171, with modified colors.
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which can be assimilated and metabolized by microbes to CO2 or protected

by mineral associations (Lehmann and Kleber, 2015).

The modulation of microbial limitation to decomposition also deter-

mines the distribution of SOM between POM and MAOM (Fig. 11).

For example, higher nitrogen availability would stimulate microbial activity

reducing POM while enhancing MAOM storage (Averill and Waring,

2018; Cotrufo et al., 2019) . We recently proposed that the relative balance

between microbial and plant limitation controls the distribution of SOM

between MAOM and POM, with relatively more MAOM in systems

where microbial activity is less limited than plant primary productivity,

and vice versa for POM (Cotrufo et al., 2021). Like microbial inhibition,

microbial limitation is also determined by the environmental conditions

(e.g., climate, oxygen, plant input chemistry, nutrient availability) and

therefore it is highly sensitive to changes of these conditions. SOM which

has accumulated because of microbial limitation may be readily lost if the

environmental conditions limiting microbial activity are released, for exam-

ple by climate, land use, or management changes. Understanding microbial

responses to global changes and incorporating this understanding into pre-

diction tools is, thus, critical for providing accurate estimates of SOM

changes in the coming decades (Treseder et al., 2012).

3.2.3 Microbial access constraint
On the longer term, SOM persistence in soils where microbial activity is not

inhibited is controlled by its accessibility to microbes, with organo-mineral

associations (Torn et al., 1997; Von Lutzow et al., 2006) and protection

within micro pores (Ekschmitt et al., 2008; Kravchenko and Guber,

2017) being the main spatial constraints on microbial mineralization of

SOM. The association of organic matter to minerals through various bind-

ing mechanisms determines MAOM accessibility to microbes, with low

molecular weight compounds of plant and microbial origin and microbial

extracellular polymeric substances being the main chemical compounds

bound to mineral surfaces (Kleber et al., 2015).

Microbial access to substrates requires their coming into contact, making

soil pores—the spaces through which microbes and substrates travel and in

which they reside—critical drivers of microbial accessibility to SOM

(Kravchenko and Guber, 2017). While micropores (<30μm) generally

limit accessibility, pores ranging in size from 30 to 150μm were found to

be ideal for microbial proliferation and activity, increasing microbial

transformation of SOM but also potentially stimulating efficient MAOM

formation in these microsites (Kravchenko et al., 2019). Pore size
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distribution is linked to aggregation, texture and Fe-(hydr)oxides along a

size-scale gradient (Fig. 13; Regelink et al., 2015). Given microbes, and in

particular bacteria, require water to access and metabolize their substrates, a

lack of water in the soil environment reduces microbial access to their sub-

strates. For mineral soils, a water potential of about �14MPa was found to

be the threshold below which microbial access to substrate would cease

Fig. 13 Conceptual representation of the pore space size in relation to water-stable and
dry-sieved aggregate sizes, interactions between mineral particles, and interactions
between organic matter (OM) and minerals. Adapted from Regelink, I.C., Stoof, C.R.,
Rousseva, S., Weng, L., Lair, G.J., Kram, P., Nikolaidis, N.P., Kercheva, M., Banwart, S.,
Comans, R.N.J., 2015. Linkages between aggregate formation, porosity and soil chemical
properties. Geoderma, 247–248, 24–37.
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(Manzoni et al., 2012). However, soil pore space (Carter, 1988) and in

particular water availability vary over time (Brocca et al., 2010), and

drying-rewetting cycles may stimulate decomposition rather than increase

SOM persistence (Schimel et al., 2007). Therefore, Lehmann et al. (2020)

proposed that the interplay between spatio-temporal variations in soil

moisture and pore space would control microbial accessibility to SOM and

its mineralization rate. Water saturation fluctuations during drying-rewetting

cycles was also shown to determine the chemical composition of the

organo-mineral fraction in addition to its degradability (Possinger et al., 2020).

While mineral association, by definition, controls MAOM persistence,

physical constraints may affect both POM and MAOM persistence.

Aggregate occlusion controls microbial community composition and acces-

sibility to SOM (Trivedi et al., 2015), as well as oxygen availability

(Keiluweit et al., 2016), slowing down the mineralization of the occluded

SOM in relation to aggregate size, with higher protection offered by the

finer aggregates (Bim€uller et al., 2016). In their landmark review, Six

et al. (2004) reconstructed the history of the research on the effects of aggre-

gates on SOM dynamics, emphasizing the role of microaggregates

(<250μm) for SOM protection and of macroaggregate (>250μm) turnover

for promoting the formation of microaggregates, thus influencing overall

SOM stabilization. Aggregate occlusion offers protection from fast decom-

position in particular for POM, which when found free in mineral soil

decomposes faster than if occluded in aggregates (Haddix et al., 2020). By

contrast, we did not observe significant differences in the 14C signature of

silt and clay sized MAOM found free or occluded in different aggregate size

fractions (Marzaioli et al., 2010), rather aggregates appeared to promote

MAOM formation (Fulton-Smith and Cotrufo, 2019), possibly because

of the increased proximity between DOM, microbes and MAOM within

aggregates, and the creation of pore sizes between 30 and 150μmparticularly

suited for MAOM formation (Kravchenko et al., 2019).

3.3 Controls of soil organic matter persistence
In the past decade, our understanding of the controls of SOM persistence has

significantly advanced. We now understand that the persistence of SOM is

driven by a complexity of abiotic and biotic factors interactingwith each other

at the ecosystem level, such that SOMpersistence becomes an emerging prop-

erty of each individual ecosystem (Schmidt et al., 2011). However, while we

can now list the controls of soil organic C along different spatial scales

(Doetterl et al., 2015; Hobley et al., 2015; Viscarra Rossel et al., 2019;

Wiesmeier et al., 2019), we cannot yet identify a hierarchical structure of
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controls as they operate across different ecosystems and scales. For example,

climate, vegetation, and parent material are known to be major drivers

of soil organic C storage (Wiesmeier et al., 2019), but their hierarchy and

interactions remain largely undefined. We recently proposed the In-N-Out

framework (Fig. 14) to overcome this knowledge gap and provide a

Fig. 14 See figure legend on opposite page.
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hierarchical structure to test the effect of different factors on SOM persistence

(Cotrufo et al., 2021).We hope that future researchwill adopt this framework

and test the related hypotheses to advance a generalizable understanding of

soil C and N cycling and storage in terrestrial ecosystems.

3.3.1 Direct and indirect climatic controls
We propose climate to be the overarching control on SOM persistence

(Fig. 14) when it imposes either a physiological inhibition (freezing

temperature, anoxic conditions, severe drought), or a large metabolic limita-

tion (low/very high temperature and moisture) on microbial activity.

Additionally, by modifying soil moisture, climate regimes also affect micro-

bial access to resources (Schimel, 2018), thus controlling SOM persistence

by modulating the microbial access constraint mechanism (Fig. 11). The

effect of climate on SOM persistence will depend on the climatic zone, since

the impact of moisture and temperature on microbial activity is not linear

(Paul, 2007). However, areas with higher precipitation and humid soils

are associated with higher soil organic C storage (Hobley et al., 2015;

Plaza et al., 2018; see Fig. 18), likely because of the increased plant produc-

tivity and inputs (Wu et al., 2011), but possibly also because higher

Fig. 14 Conceptual representation of our In-N-Out framework. Arrows in top and bot-
tom panel are color-coded according to potential controls. We hypothesize (right panel)
that C input limits soil C and N cycling when plant photosynthesis is constrained
relatively more than microbial activities. In these ecosystems, microbes process the
small available plant C inputs, resulting in low soil C stocks with relatively high
mineral-associated organic matter (MAOM) accumulation controlled by the availability
of soil minerals for stabilization of microbial aproducts. C input-limited ecosystems are
expected to have decoupled C and N cycles, with the latter being open and the excess N
lost from the soil. We also hypothesize (left panel) C output limitation to control soil C
and N cycling in systems where microbes are more inhibited than plants. C-output lim-
ited systems would be characterized by higher POM relative to MAOM, and the N
immobilized in POM would impose N limitation on productivity. Further, we hypothe-
size (central panel) that balanced plant C inputs vs microbial C outputs will result in
soils having more equal shares of POM and MAOM and closed N cycling. Further, we
expect climate to be the main driver of C input- and C output-limited systems, while
ecosystem traits emerging from the interaction of plant, microbial, and soil traits to
be significant drivers of soil C and N dynamics in ecosystems with more balanced
inputs and outputs. Finally, we hypothesize (bottom panel) that subsoils are
input-limited and their SOM dynamics are largely controlled by soil traits, including
mineral properties. Reused with permission from Cotrufo, M.F., Lavallee, J., Zhang, Y.,
Hansen, P., Paustian, K., Schipanski, M.E. & Wallenstein, W.D. 2021. In-n-out: a hierarchical
framework to understand and predict soil carbon storage and nitrogen recycling. Glob.
Chang. Biol., In Press.
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precipitation promotes DOM leaching and MAOM formation (Haddix

et al., 2020). As mentioned previously, moisture saturation also creates

anoxic conditions, inhibiting SOM mineralization and resulting in gleysols

with very high soil organic C storage primarily as undecomposed

plant-derived light POM (Angst et al., 2021). The response of SOM persis-

tence to temperature has been the focus of much research. Typically freezing

temperatures inhibiting microbial activity are associated with very high

SOM persistence, resulting in gelisols, also with very high soil organic C

storage primarily as undecomposed plant-derived POM (Angst et al.,

2021). Warming increases microbial activity and therefore stimulates

SOM transformations. Typically POM is most vulnerable to warming

(Benbi et al., 2014; Lugato et al., 2021; Rocci et al., 2021) because it’s largely

unprotected, and warming releases microbial energy limitation (Davidson

and Janssens, 2006), which is the primary mechanism of POM stabilization

(Fig. 11). Accelerated POM losses with warming may result in increased

MAOM formation (Soong et al., 2021), as more microbial products are

formed from POM decomposition which can associate to minerals. This

may be expected to be particularly true if warming increases microbial

CUE by selecting for microbes with higher CUE, as it has been inferred

on the basis of model findings (Ye et al., 2019). However, laboratory

incubations have indicated the temperature sensitivity of microbial CUE

is mediated by the substrate biochemical recalcitrance, with lower CUE

of recalcitrant compounds under warming (Frey et al., 2013). While

MAOM formation may be stimulated under warming, MAOMmineraliza-

tion is expected to be less sensitive to warming, because MAOM is stabilized

by microbial access constraints rather than metabolic limitations, and the

temperature responses of organo-mineral sorption/desorption may balance

each other out (Conant et al., 2011). However, warming may also accelerate

MAOM mineralization, in particular in agricultural soil where POM is

scarce and MAOM represents the main source of energy to microbes

(Lugato et al., 2021).

Given climate is a soil forming factor in interactions with parent material,

topography, time, vegetation and other biotic factors ( Jenny, 1941), in the

long term it affects SOM persistence in all soils. Besides directly affecting

microbial activity and access to resources by modulating soil moisture

(Schimel, 2018), climate also has an indirect effect on decomposition by

determining vegetation and microbial activity and traits (Aerts, 1997).

For example, in northern latitudes or higher altitudes, climate not only

inhibits microbial physiological activity, but determines the biome (e.g.,
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tundra, taiga) and affects vegetation and microbial traits, which in turn

affect soil C dynamics (Lynch et al., 2018). Additionally, climate controls

long-termmineral weathering, and thus the interactions between geochem-

istry and climate need to be taken into account when studying SOMdynam-

ics and storage (Doetterl et al., 2015). This interaction, in fact, determines

mineral reactivity, thus controlling nutrient availability and microbial com-

munity composition and metabolism, and modulating the energy and nutri-

ent availability and pathways ultimately responsible for SOM persistence

(Doetterl et al., 2018). Considering this long-term indirect effect of climate

on soil mineral weathering, Doetterl et al. (2018) pointed out the risk for

younger soils, for example in high latitudes, of experiencing a dramatic

change in SOM dynamics due to warming releasing current limitations

on mineral weathering.

Direct and indirect climate driving of SOM persistence is reasonably

expected to be highest under extreme climates (Cotrufo et al., 2021).

Under mesic conditions, climate exerts a more distant driving force, mostly

indirectly because of its control on vegetation and microbial traits, as well as

soil geochemical traits (Fig. 14). Thus, under mesic climates, we expect veg-

etation and microbial traits to become the primary short-term drivers of

SOM persistence in topsoils, with soil geochemical traits being the primary

driver in subsoil and for the long term in all mineral soils (Fig. 14). In man-

aged systems, the role of climate is even more secondary, with management

becoming a dominating driver of SOM dynamics (Paustian et al., 1997),

directly through disturbance and indirectly by modifying inputs, microbial

activity and traits, and soil geochemistry. SOM persistence is also controlled

by fire, which creates PyOM and therefore increases the biochemical recal-

citrance to microbial decomposition (Pellegrini et al., 2020) of a portion of

SOM in systems subject to frequent fires, either due to management or

naturally occurring wildfires.

3.3.2 Soil geochemistry controls and carbon saturation
Where plant inputs are not limiting, soil geochemical traits are the main

driver of MAOM stocks and long-term persistence (Fig. 14). By determin-

ing the amount of surface area available for organo-mineral bonding and

its reactivity, soil geochemical traits control microbial access constraints

(Doetterl et al., 2015; Kleber et al., 2015; Rasmussen et al., 2018;

Torn et al., 2009; Von Lutzow et al., 2006; Wiesmeier et al., 2019).

Given MAOM is the most abundant form of C in mineral topsoil of the

main terrestrial ecosystems aside from coniferous forests—particularly so
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for managed agricultural soils (Lugato et al., 2021)—and in all subsoils

(Rumpel and Kogel-Knabner, 2011), the soil geochemical control on

soil C storage is of utmost important for the future of soil C storage, and soil

functioning.

Traditionally, soil texture and in particular the amount of silt and clay size

particles has been considered the main control of MAOM accumulation in

soils (Hassink, 1997). Since organo-mineral association requires available

mineral surfaces, the availability of silt- and clay-sized minerals in soil

has been postulated to impose an upper limit, or saturation level, to the

amount of MAOM storage (Six et al., 2002; Stewart et al., 2007). While

the MAOM saturation hypothesis found support at large scale (Cotrufo

et al., 2019) for European soils across a range of ecosystem types (Fig. 15),

we still lack a complete mechanistic understanding of the processes deter-

mining MAOM saturation and its upper limit across different soil types

(Beare et al., 2014). The availability of mineral surfaces can explain C

sequestration potential in some cases (Chen et al., 2019), but in other cases

different processes may also be at play. Recently, Craig et al. (2021)

Fig. 15 Carbon (C) storage in mineral-associated organic matter (MAOM) vs total soil
organic carbon (SOC) storage in European soils. The amount of soil C in MAOM increases
proportionally to total SOC until a saturation plateau is reached. Data include both mea-
sured and predicted points from Lugato et al., 2021.
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proposed that biological processes limiting microbial necromass production

may also drive saturation dynamics. The observation that only a minor

portion of the mineral surface (<19%) has organic attachments, with

organo-mineral clusters sporadically distributed on key sites of rough min-

eral surfaces leaving large part of the mineral surface uncovered (Kopittke

et al., 2020; Vogel et al., 2014), further complicates the interpretation of

the mineral saturation concept.

Our current inability to fully understand MAOM saturation is likely

due to our limited understanding of the physical-chemical structuring of

organo-mineral associations. However, it is fast advancing thanks to the

availability of nanoscale analytical methods (Kopittke et al., 2020;

Possinger et al., 2020). Kleber et al. (2007) proposed that organic molecules

self-assemble on mineral surfaces in aqueous solutions, creating a series of

layers or zones based on chemical characteristics. However, this layered

organo-mineral structure has not yet been confirmed, and nanometer-

scale spatial analyses rather revealed disordered organo-mineral and

organic-organic phases, differing in their N and C molecular enrichments

(Possinger et al., 2020). In particular, N-rich compounds were observed

to preferentially create organo-mineral bonds, while organo-organic phases

form independently of the C:N ratio of the molecules (Kopittke et al.,

2020). More nanometer-scale observations of the three-dimensional struc-

ture and spatial distribution of organo-organic and organo-mineral clusters

are needed across a wide range of soil mineralogy to advance our under-

standing of organo-mineral protection and MAOM saturation.

In fact, we now recognize the importance of the geochemical nature of

minerals, beside the overall soil texture, in controlling soil organic C stocks.

Rasmussen et al. (2018) analyzed data from over 5500 soil samples across the

US and identified the importance of variables such as exchangeable calcium

(Ca), short-range-order Aluminum (Al)- and Iron (Fe)-oxyhydroxides, and

Al-, Fe- organo-metal complexes in controlling soil organic C stocks. They

also pointed to the possibility of using a pH scale to identify their relative

importance, with exchangeable Ca as the dominant control in alkaline soil

and Al- and Fe-oxyhydroxides as the best predictors in more acidic and

humid soils (Fig. 16). Their study was conducted for total soil organic C,

and the relationships they identified may have been even stronger if the

analysis focused only on the MAOM fraction. More broad-scale studies

are required to specifically link soil geochemistry, and its interactions with

organic matter chemistry and soil redox, to the accumulation and persistence

of C in MAOM.
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3.3.3 Biotic and biochemical controls of soil organic matter persistence
While climate and soil geochemistry can be considered overarching drivers

of SOM persistence because they largely control the two mechanisms

responsible for long-term soil C storage (i.e., microbial physiological limi-

tation and microbial access constraint, respectively), vegetation cover repre-

sents a significant driver of short-term SOMdynamics, controlling microbial

communities and their functionality (Fierer et al., 2012). Further, under

temperate climates these interplay of vegetation and associated microbial

communities control SOM persistence, by affecting the distribution

between POM and MAOM (Lugato et al., 2021).

While the specific chemical makeup of a molecule (apart from some

PyOM) is not expected to protect it from decomposition in the long term,

it has been recently proposed that the diversity of chemical structures may

control microbial limitations to decomposing them. Lehmann et al. (2020)

proposed that highmolecular diversity of SOM imposes an energy limitation

on microbes, because it requires investing in a larger variety of enzymes and

metabolic pathways, overall slowing down SOM mineralization. They also

proposed that microbial products have a higher molecular diversity than

plant inputs, implying that this driver of SOM persistence is more important

after rather than before microbial processing of plant inputs (Lehmann et al.,

2020). Research is required to test this novel, intriguing hypothesis.

Besides C chemistry, nutrient deficiencies are well known to be a major

Fig. 16 Proposed relative contribution of different forms of mineral associations to car-
bon stabilization in mineral-associated organic matter with the increase in soil pH. SRO
refers to short-range order minerals. Reused with permission from Rasmussen, C.,
Heckman, K., Wieder, W. R., Keiluweit, M., Lawrence, C. R., Berhe, A. A., Blankinship, J. C.,
Crow, S. E., Druhan, J. L., Hicks Pries, C. E., Marin-Spiotta, E., Plante, A. F., Sch€adel, C.,
Schimel, J. P., Sierra, C. A., Thompson, A. & Wagai, R. 2018. Beyond clay: towards an
improved set of variables for predicting soil organic matter content. Biogeochemistry,
137, 297-306 with modified colors.
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control over microbial limitation of SOM decomposition and soil C storage

(Macdonald et al., 2018), given the lower C:nutrients ratios in microbes as

compared to plant inputs (Cleveland and Liptzin, 2007). However,

according to the nitrogen mining hypothesis, nitrogen limitation can also

promote the mineralization of older SOM characterized by lower C:N in

low nutrient environments (Craine et al., 2007).

4. Soil organic matter relationships to soil properties,
functions, and their outcomes

The relationships between SOM and soil functions are complex, with

various interactions and feedbacks at multiple levels. We attempt to clarify

these relationships by reviewing causal linkages within a multi-level frame-

work that includes (1) properties of the soil mineral and organic phases, and

SOM stocks; (2) soil properties; (3) soil functions; and (4) outcomes

(Fig. 17). We consider the effects of the properties of SOM separately from

the size of SOM stocks, even though they are intrinsically linked in nature.

There have been several quality reviews on the links between SOM stocks,

soil properties, and soil functions (Hoffland et al., 2020; King et al., 2020;

Lal, 2020a). Our aim here is to complement these existing reviews and

put the current state of knowledge into the context of what we see as

the most useful SOM properties for understanding and predicting soil

functions and outcomes: SOM availability, SOM stoichiometry, and

Fig. 17 Overview of the relationships between mineral properties, SOM stocks, SOM
properties, soil properties, soil functions, and key outcomes described in this
chapter. Causal relationships are characterized as positive (blue), negative (red), both
or context dependent (gray), or suggested and in need of further study (yellow).
SOM fractions (e.g., POM and MAOM) usually differ in all three of the SOM properties
presented here. Relevant supporting studies are cited in the text.
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SOMparticle size or molecular complexity. By “useful,” wemean that these

properties are most easily quantified or reflected by physical fractionation

procedures, and their links to functioning are best supported by the current

literature. Other aspects of SOM such as temporal variability and molecular

diversity may also be important (Lehmann et al., 2020), but they are less

understood at this point in time. We then review the existing knowledge

linking these SOM and soil properties to relevant outcomes including plant

productivity, system stability and resiliency, and climate mitigation.

4.1 Contributions of soil organic matter to soil properties
Soil is a complex mixture of minerals and organic matter, each of which has

inherent properties which combine in the context of time, climate, topog-

raphy, and biota to determine emergent soil properties (Fig. 17). Several

quality reviews covering the relationships between SOM, minerals, and soil

chemical and physical properties already exist (e.g., Hoffland et al., 2020;

Krull et al., 2004; Murphy, 2015;Wander, 2004).We build on those to pro-

vide an overview and a more in-depth discussion of how SOM properties

contribute to key soil properties including soil cation exchange capacity

(CEC), soil aggregation, and soil porosity. Other soil properties (e.g., pH,

redox chemistry) play pivotal roles in SOM dynamics and soil functioning,

however their relationships to minerals, SOM stocks, and soil functions are

too complex and interactive to cover satisfactorily here. Repellency is also a

key soil property with regard to water dynamics, but its links to SOM stocks

and properties remain unclear (Cesarano et al., 2016;Miller et al., 2017), and

it often fluctuates over short timescales based on precipitation patterns

and wetting events (Vogelmann et al., 2013), making it difficult to review

in this context.

4.1.1 Cation exchange capacity
Soil CEC is a measure of the amount of negatively charged sites that can

retain and exchange positively charged ions (e.g., Mg2+, Ca2+, K+) and is

a commonly-used indicator of soil quality and fertility. Many of the myriad

organic compounds which make up SOM have pH-dependent charge (e.g.,

carboxyl groups; Kaiser et al., 2008) and are negatively charged at pH �4.5

and above, and hence contribute to soil’s CEC. In typical predictive models

of soil CEC, texture (clay content) and SOM are the main predictors,

while mineralogy is a common interacting factor (Seybold et al., 2005).

The estimated relative contribution of SOM to CEC varies depending on

SOM amount, soil texture and mineralogy, pH, and other factors, but
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typical values are between 25% and 90% (Murphy, 2015; Oorts et al., 2003).

Going further to relate SOMproperties to CEC is methodologically difficult

because it requires separating SOM with differing properties while also

accounting for or eliminating contributions by the mineral phase.

Researchers have approached this by treating physical size fractions with

hydrofluoric acid to remove minerals (Skjemstad et al., 2008), using indirect

regression approaches on physical size fractions (Oorts et al., 2003), and

focusing on soluble OM fractions (Kaiser et al., 2008). Skjemstad et al.

(2008) and Oorts et al. (2003) found that the MAOM fractions (<53μm)

generally had higher CEC and contributed more to total CEC than

the POM fractions (>53μm), while Kaiser et al. (2008) found that

pyrophosphate-soluble OM fractions accounted for 0.8–11.6% of total

CEC even though they only accounted for 0.3–0.9% of the total soil mass.

Results of these studies support the idea that CEC of SOM tends to increase

through decomposition and transformations that produce lower molecular

weight SOM compounds with higher relative proportions of reactive/acidic

functional groups (e.g., carboxyl, hydroxyl).

4.1.2 Soil structure
Soil structure is the result of the complex interplay between soil texture,

plant roots, soil biota, and SOM. These factors all interact and feedback

on each other, so mechanisms of causality of aggregation can be difficult

to parse. At larger scales, when looking across soils of similar textures, higher

SOM stocks correspond to higher aggregate stability (Le Bissonnais et al.,

2018), but this does not inform on causality. Our current understanding

of the role of SOM on aggregate formation processes comes from decades

of research on SOM accrual chronosequences in the field (e.g., Jastrow,

1996) studies on the effects of isolating or removing certain aggregate-

forming factors (e.g., Blankinship et al., 2016), and field and laboratory incu-

bations of different OM additions to assess effects on aggregate formation

(e.g., Bucka et al., 2021; Denef et al., 2002).

Roots and hyphae are important to the formation of macro-aggregates

(>250μm) because they create net-like structures and produce mucilage that

bring soil particles and microaggregates (<250μm) together (Six et al., 2004).

Living roots and hyphae would not be considered SOM, but as they die and

their structures become POM (while soluble compounds are released as

DOM), they act as nuclei of aggregate formation (Bucka et al., 2021)

through the promotion of microbial activity, leading to deposition of micro-

bial byproducts and further proliferation of saprotrophic hyphae, which
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further promote aggregation ( Jastrow and Miller, 1998). While larger, less

decomposed organic fragments (POM) can act as catalysts in macro-

aggregate formation, smaller organic compounds (e.g., DOM, microbial

products) are thought to act as a kind of “glue,” binding multiple soil

particles together or co-precipitating with metal oxides to form highly sta-

ble organo-mineral complexes (i.e., MAOM) (Wagai et al., 2020). The

strength of the binding effect and the resulting stability of the aggregates

depends on the soil mineralogy as well as the SOM chemistry and stoichi-

ometry (Bucka et al., 2021; Denef et al., 2002) with lower C:N ratio

compounds potentially forming stronger complexes (Sollins et al., 2009;

Tipping et al., 2016; Wagai et al., 2020). The effects of small organic mol-

ecules go beyond the microscale however, based on observations that they

promote macroaggregate formation and stabilization as well (Blankinship

et al., 2016; Bucka et al., 2019).

Soil porosity is another aspect of soil structure which emerges from

the interactions of several variables, including SOM (Kravchenko and

Guber, 2017). Porosity is largely an outcome of aggregation, with pores

(>10μm; Fig. 13) forming between micro- and macro-aggregates, both

of which are promoted by SOM as previously described (Zaffar and

Sheng-Gao, 2015). Roots, fungal hyphae, and soil biota can also form pores

by pushing soil particles aside as they grow or travel, or by leaving voids as

they decompose (De Gryze et al., 2006; Young and Crawford, 2004).

Smaller pores (<10μm) are also present between primary soil particles

and clay interlayer spaces, and organo-mineral associations can shape pore

architecture on this scale (Fig. 13).

4.2 Contributions of soil organic matter to soil functions
4.2.1 Water dynamics and habitat
As SOM coats mineral particles, promotes aggregation, and increases

porosity (Bucka et al., 2021), it changes the soil structure in ways which

improve water dynamics and benefit soil biota and plant roots. The preven-

tion of surface crusting and creation of flow paths lead to higher infiltration

rates. Increased porosity and soil structure lead to improved water holding

capacity (Yang et al., 2014). Murphy (2015) estimated that plant-available

water increases by �2 to 3.5mm per 10cm soil for each 1.0% increase in

soil organic C over the range of 0.7–3.0% C, and others have given similar

estimates (Lal, 2020a).

The structural effects of SOM also improve the quality of habitat that the

soil can provide to microorganisms, soil fauna, and roots. Pores of various
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sizes can be occupied by a variety of organisms, provide refugia from pre-

dation, or create hotspots of activity (Kravchenko and Guber, 2017;

Tecon and Or, 2017). Enhanced soil structure also allows roots to grow

more freely and explore larger volumes of soil, thereby increasing their

ability to access nutrients and water (King et al., 2020). While there is evi-

dence for direct effects of SOM properties on water dynamics and habitat

provision (for example, SOM can increase soil water retention at low matric

potentials by directly absorbing water; Yang et al., 2014), the effects of SOM

on these functions generally operate indirectly through its influence on soil

properties (Fig. 17).

4.2.2 Nutrient provision
Another important function that SOM contributes to is nutrient provision,

since SOM contains a wealth of essential nutrients including N, P, and S,

that can be made available by SOM depolymerization and/or mineralization

and taken up by plants and microbes. In typical agricultural soils, SOM

contains 90–95% of the total N and 20–80% of the total P (Murphy,

2015). The CEC contributed by SOM also acts to store and provide other

nutrients (e.g., Mg2+, Ca2+, K+) via an indirect mechanism (Fig. 17).

Recent meta-analyses of experiments using zero-fertilizer control methods

or 15N to track fertilizer uptake in cereal crops estimate that about 58–68% of

crop N is derived from sources other than the current year’s fertilizer (Quan

et al., 2020; Yan et al., 2020), and the primary source is likely to be the depo-

lymerization and mineralization of SOM-N. Laboratory experiments using

zero N controls also suggest that native SOM often contributes the majority

of the total mineral N in soils, even if they are relatively low in SOM and

treated with external N inputs (Masunga et al., 2016). While it might be

expected that N fertilization would bypass SOM-N supply to some extent,

in a global meta-analysis of 43 15N laboratory and field studies, Liu et al.

(2017) found that adding either organic amendments or inorganic fertilizers

actually caused higher plant uptake of native soil N. These increases did not

always correspond to higher microbe-mediated SOM-N mineralization,

suggesting that plant-mediated mechanisms such as increased root growth

and rhizosphere priming of SOM-N may be responsible (Clarholm et al.,

2015; Liu et al., 2017).

The relative contributions of different SOM components to

ecosystem N supply have been researched for decades. Earlier work showed

higher rates of net Nmineralization fromMAOM than from POM (Whalen

et al., 2000), and suggested that POM having higher C:N ratios (� >25)
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promotes N immobilization (Compton and Boone, 2002) during the early

stages of its decomposition. These results were mainly explained by the

nutrient content of the SOM fractions, with MAOM having lower C:N

ratios closer to the stoichiometric needs of soil microbes (Mooshammer

et al., 2014) and therefore resulting in more N mineralization and less N

immobilization than higher C:N POM fractions. Recently, the differences

in N provision by POM and MAOM were reemphasized and put into

the context of SOM accessibility ( Jilling et al., 2018). Daly et al. (2021)

suggest that the source of bioavailable SOM-N depends on the relative

amounts of POM and MAOM, and on mineral sorption potential. In envi-

ronments such as heathlands or coniferous forests where POM stocks are

relatively high, POM may be the predominant source of bioavailable N

because it is more easily accessed. However, in environments such as inten-

sive agricultural systems where POM stocks are low, MAOM-Nmay be the

primary source of bioavailable N even though it is generally difficult to

access, leading plants and microbes to use strategies to liberate MAOM-N

frommineral surfaces (Daly et al., 2021; Jilling et al., 2018). These ideas have

yet to be tested in the field or at larger scales. Given that SOM-N is such a

large source of N in agricultural systems (and even more so in unmanaged

systems), it is imperative that we better understand its dynamics and controls.

Future experiments to better link SOM properties to nutrient provision

under various conditions can inform targeted management of SOM stocks

in agricultural soils and beyond.

4.2.3 Supporting soil biota
SOM forms the base of the soil food web, providing C-rich substrates and

energy to decomposers. Soil microbes are generally C-limited (Soong et al.,

2018), so SOM stocks and properties are major controls on their metabo-

lism, growth, and population dynamics. Plant inputs are also a major control

on microbial growth, which then stimulates SOM formation (Prommer

et al., 2020), so it is difficult to tease apart the effects of higher plant inputs

vs higher SOM stocks on microbial biomass and activity in field experi-

ments. In laboratory incubations where plant inputs can be excluded or con-

trolled, SOM stock size is a key determinant of microbial biomass and

activity (Birge et al., 2015; Follett et al., 2007). The C and energy provision-

ing function of SOM depends not only on its stock size, but also on its prop-

erties (Fig. 17). Substrates that are less complex require lower enzymatic

investments by the microbial community to decompose, thereby better

supporting the energy provisioning function (Hoffland et al., 2020).
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Substrates that more closely match microbial stoichiometry (e.g., lower C:N

ratio) are decomposed and processed with higher efficiencies, which allows

microbes to form more biomass per unit substrate C (Sinsabaugh et al.,

2013). Higher rates of microbial biomass production andMAOM formation

from less complex and lower C:N ratio plant inputs have been observed in

both laboratory (Kallenbach et al., 2016; Lavallee et al., 2018) and field

experiments (Bird et al., 2008; Fulton-Smith and Cotrufo, 2019; Soong

and Cotrufo, 2015). In any given soil, the total stock of SOM is likely

the most important contributor to the C and energy provisioning by

SOM, while its properties play moderating roles.

4.2.4 Soil carbon storage
Given the current state of climate change, one of the most critical soil func-

tions which SOMunderpins is C storage (Fig. 17). Carbon storage is the sum

of organic and inorganic soil C stocks (which are highest in arid regions

(Mi et al., 2008) and decrease with soil acidity (An et al., 2019), but we focus

only on organic C here. The previously described mechanisms controlling

SOM formation and persistence determine distributions of SOM storage at

different spatial scales, from the pedon to the globe. Globally, soils are esti-

mated to store 2344Pg of organic C in the upper 3m ( Jobbagy and Jackson,

2000). Areas with the highest soil C stocks—where plant inputs exceed

SOM mineralization and other outputs due primarily to microbial physio-

logical inhibition (see Section 3.2)—are in climates which are cold and/or

wet enough to limit microbial activity while still allowing for plant growth,

such as boreal forests, peatlands, and tundra (Fig. 18; Jackson et al., 2017). By

contrast arid lands store the least amount of soil organic C (Fig. 18), likely

because plant inputs are more limited than microbial decomposition in

these regions (Fig. 14).

An estimated 30% of total global soil organic C is in the Northern

Circumpolar Region (Batjes, 1996). The C in these very SOM-rich soils

is predominantly found in POM and is particularly vulnerable to losses

due to changes such as warming, draining, or land use change. In particular,

POM decomposition has been shown to be more sensitive to changing cli-

mate than MAOM in natural ecosystems (Lugato et al., 2021; Rocci et al.,

2021), stressing the urgency to address climate change before the release of

microbial inhibition passes a dangerous threshold in the C-climate feedback

(Luo, 2007). Soils with the lowest C stocks—where plant inputs are very

limited due to climate constraints or biomass removal—tend to have higher

ratios of C in MAOM, which is generally less vulnerable than POM to
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change but may still be lost rapidly where it is the predominant form of C

(Lugato et al., 2021).

The depth distribution of soil C also varies by ecosystem and vegetation

type, with the concentration of C in the top 20cm relative to the first meter

of the soil profile being highest in forests, lower in grasslands, lower still in

shrublands, and being generally higher in colder and wetter systems

( Jobbagy and Jackson, 2000). Compared to forests and shrublands, grasslands

store more organic C at depth (>1m; Wang et al., 2010) and store a

larger proportion of C in MAOM (Lugato et al., 2021). Agricultural soils

typically store the lowest amount of C per unit area, mostly in MAOM,

and with the highest relative N content (i.e., lowest C:N; Lugato et al.,

2021). In Europe, we found the majority agricultural soils to be below

the saturation threshold (Fig. 15), presenting high potentials for high C

sequestration.

4.3 Linking soil organic matter to key outcomes
The links between SOM, soil functions, and key outcomes (Fig. 17) are

well-accepted and often referenced but rarely directly demonstrated. This

is largely due to the difficulty of determining causality—for example, are

higher SOM contents responsible for improving soil functioning, leading

to higher plant productivity, or is higher plant productivity and inputs to

Fig. 18 Estimated soil organic carbon (SOC) stocks to a depth of 2m using data from the
WISE30sec soil property database (Batjes, 2016). Reused with permission from
Jackson, R. B., Lajtha, K., Crow, S. E., Hugelius, G., Kramer, M. G. & Piñeiro, G. 2017. The ecol-
ogy of soil carbon: pools, vulnerabilities, and biotic and abiotic controls. Annu. Rev. Ecol.
Evol. Syst., 48, 419-445.
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soil leading to higher SOM content? Controlled experiments with manip-

ulated SOM levels (Bucka et al., 2021; Oldfield et al., 2018b, 2020) or in

agricultural trials ( Johnston et al., 2009) have attempted to tease these causal

linkages apart. However, even when these experiments are well-designed

and executed, there may be direct and indirect mechanisms operating

simultaneously which are difficult to parse. King et al. (2020) posit that

SOM may indirectly affect plant performance by improving root access

to nutrients and water, rather than directly increasing the provision of soil

nutrients and moisture. While these caveats have yet to be fully resolved,

there is still a wealth of research linking SOM to soil functioning and key

outcomes by various methods, with evidence in support of causal relation-

ships is rapidly increasing.

One of the most accepted links between SOM and outcomes is that of

erosion and flood prevention (Fig. 17). Improved soil structure is known to

decrease erodibility (Barthes and Roose, 2002), and increase infiltration

and water retention on smaller scales (Franzluebbers, 2002), which almost

certainly decreases erosion and mitigates flooding risk. However, studies

directly linking soil structure to erosion and flooding outcomes are relatively

rare (O’connell et al., 2007). Similarly, one of the least supported links is

between SOM and soil biodiversity, even though the relationship makes

sense in theory (Caruso et al., 2019; Smith et al., 2015).

The relationship between SOM and plant productivity (Fig. 17), espe-

cially agricultural yields, has been studied for over a century. Early experi-

ments using long-term trials such as those at Rothamsted suggested that soils

with higher SOM tended to produce higher yields when no fertilizer N was

added ( Johnston, 1986), but these could not be easily replicated. More

recently, the availability of larger datasets including yield and SOM variables

have allowed for broader assessment of these relationships (Fig. 19; Oldfield

et al., 2019). Researchers have related not only average crop yields, but also

yield stability through time to SOM stocks. For example, Pan et al. (2009)

synthesized data from cereal crops across mainland China and found positive

relationships between soil organic C and grain yield, and strong negative

relationships between soil organic C and yield variability. In a study of pre-

dominantly rain-fed corn systems in the United States, Kane et al. (2021)

found that SOM stocks were positively correlated with yield, and the pos-

itive relationship strengthened when drought conditions were more severe.

They also found that crop insurance payouts tended to be lower where

SOM stocks were higher, suggesting higher crop resiliency (Kane et al.,

2021). They attributed these effects to the improved water holding capacity
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(Williams et al., 2016) and nutrient provisioning (using CEC as a proxy) of

soils with higher SOM (Fig. 17), though there were other mechanisms at

play which they could not pinpoint using their dataset (Kane et al., 2021).

Supply of SOM-derived nutrients to crops has been suggested to be the

major mechanism explaining positive relationships between SOM and yields

(Fig. 17). This makes sense given the large amounts of non-fertilizer N that

crops take up, as previously discussed. In a meta-analysis of Dutch agricul-

tural soils, Schjønning et al. (2018) estimated that the level of mineral N

needed to reach potential crop production decreased by 12.3kgN ha�1

for every 1% increase in soil organic C. In a global meta-analysis of SOM

Fig. 19 Relationship between soil organic C (SOC) andmaize yield for published studies
presented by Oldfield et al. (2019). The regression lines represent modeled yields for
rain-fed maize based on the averages of aridity, pH, texture, and latitude at
different N fertilization rates in their meta-dataset. Different levels of N inputs are rep-
resented by the three lines, with the red line representing the mean N input rate
(118kgN ha�1 year�1) across all studies, the bottom line representing 0N, and the
top line representing 200kgN ha�1year�1. The sizes of the raw data points represent
the full range of nitrogen inputs, from 0 (smallest circles) to 500kgNha�1 year�1 (largest
circles). This figure, from Oldfield, E. E., Bradford, M. A. & Wood, S. A. 2019. Global
meta-analysis of the relationship between soil organic matter and crop yields. Soil, 5,
15-32, is licensed under CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/deed.ast).
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and crop yields, Oldfield et al. (2019) estimated that at lower rates of N

input (�50kgN ha�1), fertilizer inputs could be cut in half with yields

maintained if soil organic C were increased from 0.5% to 1.0% (Fig. 19).

When nutrients are not limiting, the positive effects of SOM on yield have

been found to diminish in some studies (Hijbeek et al., 2017; Schjønning

et al., 2018). However, yield responsiveness to N additions has also been

shown to increase with soil organic C ( Johnston et al., 2009), which suggests

the benefits of SOM to crop yields go beyond just N provisioning (King

et al., 2020).

There has been very little research into the specific properties of SOM

and how they relate to plant productivity and yield, but we believe this could

be the key to deepening our understanding of the mechanisms at play,

thereby improving our ability to manage for desired outcomes. Multiple

meta-analyses have shown a positive relationship between yield and soil

organic C that eventually plateaus or even becomes negative beyond a cer-

tain soil organic C threshold (Oldfield et al., 2019; Waqas et al., 2020),

suggesting that SOM only benefits yield up to a point. The mechanisms

behind this plateau, and how best to predict the threshold level of SOM

for a given site remain unknown (Lal, 2020b), but separating SOM based

on its properties could provide a way forward (Dexter et al., 2008;

Schjønning et al., 2018). As total SOM increases, the ratio of POM:

MAOM also tends to increase (Cotrufo et al., 2019; Lugato et al., 2021).

This shift in SOM character affects soil properties (Dexter et al., 2008)

and likely affects the rate or mechanisms of N supply to crops (Daly

et al., 2021), especially if the POM has a high C:N ratio. Schjønning

et al. (2018) put their results into the context of mineral capacity (i.e.,

MAOM saturation), and suggested that the estimated potential yield was

higher when the fine mineral fraction was closer to saturation. This aligns

with the ideas of Daly et al. (2021), where N supply drops when the mineral

sorption potential is high compared to SOM-N supply. Schjønning et al.

(2018) were unable to investigate SOM fractions directly due to limitations

of their dataset, but they recommend further analyses in the context of dif-

ferent SOM fractions to fully understand SOM-yield relationships and

we agree.

The ability of soils to store large amounts of C, and their capacity for

additional C storage, points to their great potential for climate mitigation.

Sanderman et al. (2017) suggested an upper limit to potential C storage in

global agricultural lands – based on estimates of C losses over the past

12,000 years – of �133 Pg C in the top 2m, representing a �4% increase
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in the existing global soil C stock of these lands to 2m and a�16% reduction

of atmospheric CO2. Given the need for long-term C storage, other studies

have focused on soil C sequestration potential in long-lived soil C

forms including MAOM. A recent theoretical exploration of the upper

limit for additional MAOM formation in global soils suggested that

107�13Pg C could be added by sorption to 1 m depth, representing a

�7% increase in the global soil C stock in the top 1m (Abramoff et al.,

2021). Realistically, constraints to plant inputs and human land use require-

ments limit what is realizable. Yet, global soils are still estimated to have

the potential to store an additional 2–8Pg CO2e year
�1 (Fig. 20; Paustian

et al., 2019)—not counting avoidable losses of �2.2Pg CO2e year�1

(Bossio et al., 2020)—with high potential storage in agricultural lands

and grasslands (Amelung et al., 2020). Assuming these rates could be

maintained for 20 years before decreasing and approaching equilibrium, this

could amount to total soil storage of 40–160Pg CO2e that equates to

�10.9–43.6Pg C (using a simple conversion of 1 tone C to 3.67 tones

Fig. 20 Published estimates of global biophysical soil carbon sequestration potential,
assuming (near) full adoption of C sequestering practices. Estimates vary in terms of
which practices or land use types they included, with estimates after 2000 including
a wider range of options on all agricultural lands, as opposed to pre-2000 estimates
which focused on cropland and set-aside of marginal cropland to grassland. Redrawn
from Paustian, K., Collier, S., Baldock, J., Burgess, R., Creque, J., Delonge, M., Dungait, J.,
Ellert, B., Frank, S. & Goddard, T. 2019. Quantifying carbon for agricultural soil manage-
ment: from the current status toward a global soil information system. Carbon Manag.,
10, 567–587, with the addition of estimates from Bossio, D., Cook-Patton, S., Ellis, P.,
Fargione, J., Sanderman, J., Smith, P., Wood, S., Zomer, R., Von Unger, M. &
Emmer, I. 2020. The role of soil carbon in natural climate solutions. Nat. Sustain., 1–8.
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CO2e). Consistent with this range, Bossio et al. (2020) estimated that

rebuilding depleted SOM stocks represents about 15%, and avoidable losses

of existing stocks another 10%, of the total potential C sequestration of

natural climate solutions, which is estimated to be 23.8Pg CO2eyear
�1

(Griscom et al., 2017). Importantly, these estimates do not account for

the form the accrued or existing SOC is in, or its vulnerability to unavoid-

able future changes including warming, but understanding potential

storage of soil C in different forms will further inform on best management

practices and priority areas for sequestration efforts.

5. Managing for soil organic matter regeneration

Right now, SOM is seen as a vital pathway to achieving multiple sus-

tainability goals, with climate mitigation and food security at the forefront.

Increasing soil organic C storage for climate mitigation will require both

preserving existing SOM stocks and increasing SOM stocks wherever

feasible, using practices which do not result in increased greenhouse gas

(N2O and CH4) emissions (Guenet et al., 2021). On the other hand,

improving soil health for food security will require the turnover of SOM,

responsible for regenerating fertility and supporting soil biota ( Janzen,

2006). Achieving these goals simultaneously requires careful management

of SOM stocks using a systems-thinking approach which considers the

interplay between environmental context, management practices, SOM

formation and stabilization processes, and the contributions of SOM to soil

functioning.

Regenerating SOM in managed lands has an estimated potential to store

up to�8Pg CO2e year
�1 (Fig. 20; Paustian et al., 2019), but it is also imper-

ative to avoid losses of existing SOM stocks by avoiding land use changes

which release soil C (e.g., from grasslands to row crops), minimizing soil

erosion, and protecting peatlands and wetlands (Bossio et al., 2020). At

the broadest level, SOM stocks are determined by the balance of inputs

and outputs, and we can use our understanding of SOM formation and sta-

bilization to manage these processes to regenerate and increase SOM stocks.

In most agricultural soils, SOM stocks have declined through time

because inputs are relatively low (e.g., due to biomass harvest, small root

systems of annual plants, and fallow periods) and outputs are relatively high

(e.g., due to soil disturbance reducing microbial access constraints, Fig. 11).
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One effective way to counteract this is by increasing inputs that are known

to promote efficient SOM formation. Examples include living roots

(Sprunger et al., 2019b), root exudates, high quality plant litter (Sprunger

et al., 2019a), and compost (Wei et al., 2016). All these inputs can stimulate

microbial activity and promote the formation of microbial metabolites and

necromass, leading to aggregate and MAOM formation (Fig. 5). One caveat

to this strategy is that efficient SOM formation requires relatively high

amounts of nutrients (Kirkby et al., 2014). Increasing SOM stocks in agri-

cultural soils will require N, P, and other nutrients to proceed successfully,

which has been identified as a potential hinderance or downside of this man-

agement goal (Schlesinger and Amundson, 2019; Spohn, 2020; Van

Groenigen et al., 2006). However, management practices that increase soil

nutrient levels or tighten nutrient cycles and minimize nutrient losses, such

as planting legumes (Canarini et al., 2018; Hobley et al., 2018; Schmeer

et al., 2014), using enhanced efficiency fertilizers (Li et al., 2018; Xia

et al., 2017), or improving grazing management (Gosnell et al., 2020;

Mosier et al., 2021; Teague et al., 2011), have the potential to provide

these necessary nutrients without requiring increased inputs of synthetic

fertilizers. Other strategies to combat nutrient limitation to C storage

could include decreasing the nutrient demand of C storage, for example

by increasing the direct sorption of C-rich, plant-derived DOM to

MAOM. According to the C-surplus hypothesis (Prescott et al., 2020),

plants exude C-rich soluble compounds when photosynthetic C uptake

exceeds plant biosynthetic capacity, for example under conditions of

nutrient or water limitation. Promoting this influx of C-rich material to

the soil could increase its contributions to MAOM, possibly through

organo-organic bonding (Kopittke et al., 2020), thereby increasing the C:

N ratio of MAOM and reducing the N cost of persistent MAOM storage

(Cotrufo et al., 2019).

In conjunction with increasing inputs which promote SOM formation,

the key to regenerating SOM lies in promoting its persistence, by increasing

the proportion of SOM that is stabilized in soil. Practices that are likely to

increase persistence include reducing tillage to maintain soil structure, pri-

oritizing inputs that lead to relatively more MAOM than POM formation,

and increasing inputs to deep soils so long as priming is avoided. This can also

be achieved by focusing regeneration efforts on soils which have high capac-

ities for additional MAOM storage, and which are likely to have higher

SOM persistence. Most agricultural soils have sustained significant SOM

losses through time (Sanderman et al., 2017) and are therefore far from
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physicochemical saturation thresholds and have highMAOM storage capac-

ities (Angers et al., 2011), making them ideal for regeneration of persistent

SOM from that standpoint. Soils which are more likely to support regener-

ation of persistent SOM include fine-textured soils, soils with higher

reactive mineral/metal concentrations, areas with low disturbance, or even

cold or waterlogged soils.

While fundamental research will need to continue discovering the much

which is left unknown of SOM dynamics, we now have enough of an

understanding to move forward with concerted actions to preserve and

restore SOM world-wide. Global maps of C and N distribution in POM

and MAOM (e.g., Lugato et al., 2021; Viscarra Rossel et al., 2019) and

of MAOM saturation deficits (e.g., Angers et al., 2011) will be needed

to provide baselines to inform and direct SOM conservation and regener-

ation programs. Advancement in the use of spectroscopy and artificial

intelligence to increase throughput of estimation of soil C and N distri-

bution between POM and MAOM will aid in this mapping effort

(Baldock et al., 2018; Lugato et al., 2021; Ramirez et al., 2021;

Sanderman et al., 2021). Organic soils, in particular peatlands and

wetlands, with high C stocks in POM will require specific protection to

avoid land conversion and disturbance. Incentives will need to be devoted

to accelerating the large-scale adoption of regenerative management

principles to increase SOM stocks, both in POM and MAOM and

along the soil profile of managed mineral soils. New generation models

which represent the current understanding of SOM dynamics and are

verifiable by the growing wealth of data must be included in ready-to-use

decision support tools to enable accurate forecasting of best site-specific

regenerative management principles to adopt. If the specific environ-

mental benefits associated with those practices (e.g., C sequestration, water

and nutrient provision, increased biodiversity) will be remunerated by

markets, they will need to be accurately quantified via rigorous efforts

requiring both modeling and measurement verification that accounts for

the persistence of such benefits. The scientific community has the knowl-

edge and are developing the tools to follow this path, with long-lasting

benefits for the future of humanity on our planet.
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Meier, I.C., Millard, P., Ostonen, I., 2020. Surplus carbon drives allocation and
plant–soil interactions. Trends Ecol. Evol. 35 (12), 1110–1118.

Preston, C.M., Nault, J.R., Trofymow, J., 2009. Chemical changes during 6 years of
decomposition of 11 litters in some canadian forest sites. part 2. 13 C abundance,
solid-state 13 C NMR spectroscopy and the meaning of “lignin”. Ecosystems 12,
1078–1102.

Prommer, J., Walker, T.W.N., Wanek, W., Braun, J., Zezula, D., Hu, Y., Hofhansl, F.,
Richter, A., 2020. Increased microbial growth, biomass, and turnover drive soil organic
carbon accumulation at higher plant diversity. Glob. Chang. Biol. 26, 669–681.

Quan, Z., Li, S., Zhang, X., Zhu, F., Li, P., Sheng, R., Chen, X., Zhang, L.-M., He, J.-Z.,
Wei, W., 2020. Fertilizer nitrogen use efficiency and fates in maize cropping systems
across China: field 15N tracer studies. Soil Tillage Res. 197, 104498.

Ramirez, P., Calderon, F.J., Haddix, M., Lugato, E., Cotrufo, M.F., 2021. Using diffuse
reflectance spectroscopy as a high throughput method for quantifying soil C and N
and their distribution in particulate and mineral-associated organic matter fractions.
Front. Environ. Sci. 9, 153.

Rasmussen, C., Heckman, K., Wieder, W.R., Keiluweit, M., Lawrence, C.R., Berhe, A.A.,
Blankinship, J.C., Crow, S.E., Druhan, J.L., Hicks Pries, C.E., Marin-Spiotta, E.,
Plante, A.F., Sch€adel, C., Schimel, J.P., Sierra, C.A., Thompson, A., Wagai, R.,
2018. Beyond clay: towards an improved set of variables for predicting soil organic mat-
ter content. Biogeochemistry 137, 297–306.

Rasse, D.P., Rumpel, C., Dignac, M.F., 2005. Is soil carbon mostly root carbon? mecha-
nisms for a specific stabilisation. Plant and Soil 269, 341–356.

61Soil organic matter formation, persistence, and functioning

http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1020
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1020
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1025
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1030
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1035
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1035
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1040
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1040
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1040
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1045
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1045
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1050
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1050
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1050
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1055
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1055
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1055
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1055
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1060
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1060
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1060
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1060
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1065
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1065
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1065
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1065
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1070
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1070
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1070
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1070
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1075
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1075
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1075
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1075
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1080
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1080
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1080
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1080
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1085
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1085
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1085
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1090
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1090
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1090
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1095
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1095
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1095
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1095
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1100
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1100
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1100
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1100
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1100
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1100
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1105
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1105


Regelink, I.C., Stoof, C.R., Rousseva, S., Weng, L., Lair, G.J., Kram, P., Nikolaidis, N.P.,
Kercheva, M., Banwart, S., Comans, R.N.J., 2015. Linkages between aggregate forma-
tion, porosity and soil chemical properties. Geoderma 247–248, 24–37.

Rethemeyer, J., Kramer, C., Gleixner, G., John, B., Yamashita, T., Flessa, H., Andersen, N.,
Nadeau, M.-J., Grootes, P.M., 2005. Transformation of organic matter in agricultural
soils: radiocarbon concentration versus soil depth. Geoderma 128, 94–105.

Rocci, K.S., Lavallee, J.M., Stewart, C., M.F., C., 2021. Soil organic carbon response to
global environmental change depends on its distribution between mineral-associated
and particulate organic matter: a meta-analysis. Sci. Total Environ. 793, 148569.

Rumpel, C., Kogel-Knabner, I., 2011. Deep soil organic matter—a key but poorly under-
stood component of terrestrial c cycle. Plant and Soil 338, 143–158.

Samson, M.-�E., Chantigny, M.H., Vanasse, A., Menasseri-Aubry, S., Angers, D.A., 2020.
Coarse mineral-associated organic matter is a pivotal fraction for som formation and is
sensitive to the quality of organic inputs. Soil Biol. Biochem. 149, 107935.

Sanderman, J., Hengl, T., Fiske, G.J., 2017. Soil carbon debt of 12,000 years of human land
use. Proc. Natl. Acad. Sci. U. S. A. 114, 9575–9580.

Sanderman, J., Baldock, J.A., Dangal, S.R.S., Ludwig, S., Potter, S., Rivard, C., Savage, K.,
2021. Soil organic carbon fractions in the great plains of the united states: an application
of mid-infrared spectroscopy. Biogeochemistry 156, 97–114.

Schimel, J.P., 2018. Life in dry soils: effects of drought on soil microbial communities and
processes. Annu. Rev. Ecol. Evol. Syst. 49, 409–432.

Schimel, J., Balser, T.C., Wallenstein, M., 2007. Microbial stress-response physiology and its
implications for ecosystem function. Ecology 88, 1386–1394.

Schjønning, P., Jensen, J.L., Bruun, S., Jensen, L.S., Christensen, B.T., Munkholm, L.J.,
Oelofse, M., Baby, S., Knudsen, L., 2018. The role of soil organic matter for maintaining
crop yields: evidence for a renewed conceptual basis. Adv. Agron. 150, 35–79.

Schlesinger, W.H., Amundson, R., 2019. Managing for soil carbon sequestration: let’s get
realistic. Glob. Chang. Biol. 25, 386–389.

Schlesinger, W.H., Bernhardt, E.S., 2013. Biogeochemistry: An Analysis of Global Change.
Academic Press.

Schmeer,M., Loges, R., Dittert, K., Senbayram,M.,Horn,R., Taube, F., 2014. Legume-based
forage production systems reduce nitrous oxide emissions. Soil Tillage Res. 143, 17–25.

Schmidt, M.W.I., Torn, M.S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I.A.,
Kleber, M., Kogel-Knabner, I., Lehmann, J., Manning, D.A.C., Nannipieri, P.,
Rasse, D.P., Weiner, S., Trumbore, S.E., 2011. Persistence of soil organic matter as
an ecosystem property. Nature 478, 49–56.

Schrumpf, M., Kaiser, K., Guggenberger, G., Persson, T., K€ogel-Knabner, I.,
Schulze, E.-D., 2013. Storage and stability of organic carbon in soils as related to depth,
occlusion within aggregates, and attachment to minerals. Biogeosciences 10, 1675–1691.

Schrumpf, M., Kaiser, K., Mayer, A., Hempel, G., Trumbore, S., 2021. Age distribution,
extractability, and stability of mineral-bound organic carbon in central European soils.
Biogeosciences 18, 1241–1257.

Seybold, C., Grossman, R., Reinsch, T., 2005. Predicting cation exchange capacity for soil
survey using linear models. Soil Sci. Soc. Am. J. 69, 856–863.

Shen, X., Yang, F., Xiao, C., Zhou, Y., 2020. Increased contribution of root exudates to soil
carbon input during grassland degradation. Soil Biol. Biochem. 146, 107817.

Shi, Z., Allison, S.D., He, Y., Levine, P.A., Hoyt, A.M., Beem-Miller, J., Zhu, Q.,
Wieder, W.R., Trumbore, S., Randerson, J.T., 2020. The age distribution of global soil
carbon inferred from radiocarbon measurements. Nat. Geosci. 13, 555–559.

Sierra, C.A., M€uller, M., Metzler, H., Manzoni, S., Trumbore, S.E., 2017. The muddle of
ages, turnover, transit, and residence times in the carbon cycle. Glob. Chang. Biol. 23,
1763–1773.

62 M. Francesca Cotrufo and Jocelyn M. Lavallee

http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1110
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1110
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1110
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1115
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1115
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1115
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1120
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1120
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1120
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1125
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1125
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1130
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1130
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1130
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1130
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1135
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1135
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1140
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1140
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1140
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1145
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1145
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1150
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1150
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1155
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1155
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1155
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1160
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1160
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1165
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1165
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1170
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1170
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1175
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1175
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1175
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1175
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1180
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1180
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1180
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1180
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1185
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1185
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1185
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1190
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1190
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1195
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1195
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1200
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1200
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1200
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1205
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1205
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1205
http://refhub.elsevier.com/S0065-2113(21)00104-8/rf1205


Sinsabaugh, R.L., Manzoni, S., Moorhead, D.L., Richter, A., 2013. Carbon use efficiency of
microbial communities: stoichiometry, methodology and modelling. Ecol. Lett. 16,
930–939.

Six, J., Conant, R.T., Paul, E.A., Paustian, K., 2002. Stabilization mechanisms of soil organic
matter: implications for C-saturation of soils. Plant and Soil 241, 155–176.

Six, J., Bossuyt, H., Degryze, S., Denef, K., 2004. A histrory of research on the link between
(micro)aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res. 79,
7–31.

Skjemstad, J.O., Gillman, G.P., Massis, A., Spouncer, L.R., 2008. Measurement of cation
exchange capacity of organic-matter fractions from soils using a modified compulsive
exchange method. Commun. Soil Sci. Plant Anal. 39, 926–937.

Smith, P., Cotrufo, M., Rumpel, C., Paustian, K., Kuikman, P., Elliott, J., Mcdowell, R.,
Griffiths, R., Asakawa, S., Bustamante, M., 2015. Biogeochemical cycles and biodiver-
sity as key drivers of ecosystem services provided by soils. Soil 1, 665–685.

Smyth, C., Kurz, W., Neilson, E., Stinson, G., 2013. National-scale estimates of forest root
biomass carbon stocks and associated carbon fluxes in Canada. Global Biogeochem.
Cycles 27, 1262–1273.

Sokol, N.W., Bradford, M.A., 2019. Microbial formation of stable soil carbon is more effi-
cient from belowground than aboveground input. Nat. Geosci. 12, 46–53.

Sokol, N.W., Kuebbing, S.E., Karlsen-Ayala, E., Bradford, M.A., 2019a. Evidence for the
primacy of living root inputs, not root or shoot litter, in forming soil organic carbon.
New Phytol. 221, 233–246.

Sokol, N.W., Sanderman, J., Bradford, M.A., 2019b. Pathways of mineral-associated soil
organic matter formation: integrating the role of plant carbon source, chemistry, and
point of entry. Glob. Chang. Biol. 25, 12–24.

Sollins, P., Kramer, M.G., Swanston, C., Lajtha, K., Filley, T., Aufdenkampe, A.K.,
Wagai, R., Bowden, R.D., 2009. Sequential density fractionation across soils of contra-
sting mineralogy: evidence for both microbial- and mineral-controlled soil organic mat-
ter stabilization. Biogeochemistry 96, 209–231.

Soong, J., Cotrufo, M.F., 2015. Annual burning of a tallgrass prairie inhibits c and n cycling in
soil, increasing recalcitrant pyrogenic organic matter storage while reducing n availabil-
ity. Glob. Chang. Biol. 21, 2321–2333.

Soong, J.L., Parton, W.J., Calderon, F.J., Campbell, N., Cotrufo, M.F., 2015. A new con-
ceptual model on the fate and controls of fresh and pyrolized plant litter decomposition.
Biogeochemistry 124, 27–44.

Soong, J.L., Vandegehuchte, M.L., Horton, A.J., Nielsen, U.N., Denef, K., Shaw, E.A., De
Tomasel, C.M., Parton,W.J., Wall, D.H., M.F., C., 2016. Soil microarthropods support
ecosystem productivity and soil c accrual: evidence from a litter decomposition study in
the tallgrass prairie. Soil Biol. Biochem. 92, 230–238.
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