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We face an urgent and complex challenge to produce large amounts of healthful animal and plant foods
for an estimated 10 billion people by 2050 while maintaining essential ecosystem services. To compound
this challenge, we must do so while not further degrading our environment and conserving essential
nutrients such as copper, magnesium, phosphorus, selenium, and zinc that are in short supply for fertil-
ization. Much good research has been done, but to meet this challenge, we need to greatly increase on-
farm and watershed-scale research including on-farm evaluations and demonstrations of the putative
best combinations of stewardship techniques over multiple years in real-world settings, which are
backed by data on nutrient inputs, soil, air, and water chemistry (fluxes) and water discharge. We also
need to work with farmers, specialists, and generalists in highly creative interdisciplinary teams that
resist forming silos and that use combinations of techniques linked to agroecology and industrial ecology
in combination with state-of-the-art engineering. Some of these research and demonstration farms need
to be in catchments prone to pollution of aquatic and terrestrial ecosystems with nitrogen, phosphorus,
and other nutrients. Some promising approaches include mixed crop-livestock systems, although these
alone may not be productive enough without updating to meet the dietary needs of an estimated 10 bil-
lion people by 2050. Other approaches could be state-of-the-art multi-trophic production systems, which
include several species of plants integrated into production with vertebrates (e.g., ruminants, pigs, poul-
try), invertebrates (e.g., insects, earthworms) and fish, shrimp, or crayfish to utilize wasted feed and exc-
reta, and recycle nutrients back to the animals (via plants or invertebrates) in the systems. To cut costs
and increase desirable outputs, we must recycle nutrients much better within our food production sys-
tems and produce both animal and plant foods more efficiently as nutrients cycle through systems.
Published by Elsevier B.V. on behalf of The Animal Consortium. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Implications

Over the next 10–30 years, major policy changes will likely
occur in food systems of developed nations, as consumers, indus-
try, and policymakers become more aware of the challenges and
changes needed for sustainable food systems. Agricultural systems
will have to conserve and better recycle nutrients, use external
inputs more sparingly, and reduce pollution of air, water, and land.
Fertilizers that are upcycled from waste streams will have to
become more common. More complex systems may produce mul-
tiple species of animals, including combinations of terrestrial and
aquatic animals, and diverse species of crops that better recycle
nutrients. Regenerative agricultural practices will need to expand
rapidly to improve soil health and fertility, and improve efficiency
of nutrient use in order to meet the grand challenges of feeding an
estimated 10 billion people by mid-century in a sustainable
manner.
Introduction

We make a case in this review for the need to transform con-
ventional animal and plant food production, but this is impossible
unless we first transform how we see ourselves, our relationship
with one another and the environments we inhabit. This thinking
was fundamental in cultures when most people were involved in
food production and had a strong connection to the land. Over a
hundred years ago, American professor F.H. King wrote ‘Farmers
agroe-
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of Forty Centuries – Organic Farming in China, Korea, and Japan’. In
the introduction, he states: ‘‘Again, the great movement of cargoes
of feeding stuffs and mineral fertilizers to Western Europe and to
the eastern United States began less than a century ago and has
never been possible as a means of maintaining soil fertility in
China, Korea or Japan, nor can it be continued indefinitely in either
Europe or America. These importations are for the time making tol-
erable the waste of plant food materials through our modern sys-
tems of sewage disposal and other faulty practices; but the
Mongolian races have held all such wastes, both urban and rural,
and many others which we ignore, sacred to agriculture, applying
them to their fields.”

While nature has introduced great biodiversity into ecosystems,
modern farming systems are adamant on simplifying production to
single species of crops or animals in separate production systems
(Watson et al., 2019). Simplified systems may be productive in
the short run, but they make it difficult for farming systems to
recycle nutrients and be sustainable in the long-run. In the long-
run, simplified systems go against the five principles for sustain-
able food and agriculture: (1) improving efficiency in the use of
resources; (2) conserving, protecting, and enhancing natural
ecosystems; (3) protecting and improving rural livelihoods, equity,
and social well-being; (4) enhancing the resilience of people, com-
munities, and ecosystems; and (5) promoting good governance of
both natural and human systems (FAO, 2019). Raising awareness
of ‘traditional’ wisdom among consumers, producers, scientists
and policymakers would help to restore production systems that
value biodiversity and promote self-sustainability through raising
multiple crops in rotations that integrate multiple species of live-
stock, and in some cases in combination with aquaculture (e.g.,
rice-duck-fish farming in Southeast Asia).

Many people now question meat and dairy production and con-
sumption in a world of nearly eight billion people with growing
awareness of widespread human and environmental health prob-
lems (Frazao, 1996; Steffen et al., 2015; Alexander et al., 2016;
Fanzo et al., 2020). We now use over a third of the Earth’s land sur-
face and over 75% of the world’s freshwater supply for crop and
livestock production (IPBES, 2019). Intensive forms of livestock
production have been and will continue to be challenged over con-
cerns for animal welfare (Manteca et al., 2008; Provenza et al.,
2019), for adding to antibiotic and antifungal resistance
(Spellberg et al., 2016; Hoelzer et al., 2017; Fisher et al., 2018),
and for transmission of disease such as coronaviruses (Jacobs
et al., 2020) to people (Graham et al., 2008). While these concerns
will probably also influence future livestock management, for this
review, we identify and describe approaches that could help close
nitrogen (N), phosphorus (P), and other nutrient cycles for inten-
sive and semi-intensive livestock production systems of high-
producing species as well as related challenges and trends for the
next two to three decades. The need for changes to reduce reactive
N pollution alone is clearly urgent (Uwizeye et al., 2020).

In the distant past, carbon (C), N, P and other nutrients were
coupled and considered to be recycled better in agroecosystems
because integration of crop and livestock production was common
and manure was a primary source of nutrients for crops (Watson
et al., 2019). However, there was some pollution of N and P (and
C loss) into air and aquatic systems with these mixed farming sys-
tems, especially when managed improperly (e.g., ammonia emis-
sions from excreta, soil erosion from tillage or excessive livestock
stocking rates, and/or inappropriate type of livestock for particular
landscapes; Wang et al., 2017). However, livestock numbers were
generally lower in the first half of the 20th Century and earlier
so it is difficult to determine, without more research, how much
difference mixed farming systems could make now with more
livestock. A recent study by Noll et al. (2020) suggests that
mixed organic production systems have similar losses of reactive
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N species (ammonia, nitrate, and nitrous oxide) per unit of N as
conventional systems, except organic beef production, which lost
more per unit N or per unit product. Moreover, there have been
very few multi-year water quality studies comparing mixed crop-
livestock farming with non-mixed farming on the same soil and
landscape to determine if N and/or P lost from mixed farming sys-
tems are lower than for non-mixed systems (Faust et al., 2017).
Yet, there is some evidence that mixed crop and livestock produc-
tion that manages all resources for more coupling of C, N, and P is
better for soil health and nutrient cycling especially if perennial
pasture with a diverse mixture of plant species is rotated with ara-
ble annual crops (especially using no-till cropping and including
cover crops), and only moderate removal of vegetation by livestock
is allowed. Lin et al. (2016) found that an organic mixed farming
system in southern Germany with an intensive N cycle between
soil, plant and animal components had accumulation of soil
organic N, the highest N-use efficiency and the lowest N surplus
compared to two arable cropping systems. Assmann et al. (2017)
observed that long-term integrated crop-livestock systems in
southern Brazil enabled more constant and efficient nutrient
cycling because animal, pasture, and crop residues release nutri-
ents at different rates. The authors found that the greatest rates
of total P and K release were from pasture and dung residues under
light grazing intensities. They also found that about 25 kg P/ha and
about 155 kg K/ha were cycled in an integrated soybean-beef cattle
system, which they considered desirable for the mineral-deficient
clayey Oxisol soil. Denardin et al. (2020) observed that rice yields
were higher with a rice-cattle integrated system with winter graz-
ing of annual ryegrass and no-tillage rice production compared to
conventional rice monocropping with tillage and winter fallow.
Franzluebbers (2018 and 2019) found that cornfields with mini-
mum tillage, multi-species cover crops, and animal manure
amendment had greater soil biological activity, greater soil health
and soil microbial biomass carbon, and greater N mineralization;
thus they needed less synthetic nitrogen fertilizer. This evidence
suggests that air and aquatic systems could have less N pollutants
if livestock and crop production are integrated into systems with
less mineral fertilizer use and in a manner that includes cover
crops and perennial vegetation (with legumes) rotated with arable
crops, which are grown with minimal tillage. These combined
practices build up organic matter and various types of organic car-
bon in soil. With increasing simplification and intensification of
farming systems, nutrient cycles have become uncoupled in many
farming systems across the globe.

Although mixed or integrated crop and livestock production has
potential to improve nutrient use efficiency while reducing nega-
tive externalities of farming systems (Kronberg and Ryschawy,
2019), it is not a panacea for completely closing nutrient cycles
and improving soil health (Liebig et al., 2017). Problems such as
soil compaction, uneven distribution of nutrients from excreta,
and poor synchronization of nutrient availability with crop needs
can occur. However, manure is often not managed ideally on farms
that produce only livestock because it is typically considered more
of a costly problem than a valuable resource and is usually moved
only short distances to farmlands. Moreover, the flow of nutrients
in manure from animal-only farms tends to be one-way with nutri-
ents in manure not returning in animal feeds as there is little if any
nutrient cycling between animal- and crop-only farms (Nowak
et al., 2015).

Any form of farming can be managed poorly; however, farms
that produce only arable crops often apply excess mineral fertiliz-
ers (unless precision fertilization is used) rather than manure—
which can be applied precisely too— (Moshia et al., 2014; 2015)
and may not time fertilizer application well with crop needs. In
addition, N fertilizer may be applied in a manner that leads to N
loss to volatilization or movement on fields from runoff, not grow
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ideal mixtures of cover crops, which can take up excess nutrients —
such as nitrate— not used by arable crops (Thapa et al., 2018), till
the fields frequently, and not use wide vegetated buffer strips
between cropland and wetland to prevent water contamination
from excess nutrients (Zhang et al., 2010). Consequently, soil and
soil microbes are frequently disturbed, which harms soil health
and generates significant air, aquatic, and terrestrial pollution
associated with various forms of N and P fertilizer that require fos-
sil fuels and associated emissions of carbon dioxide, nitrogen oxi-
des, and other compounds to produce and transport. In contrast,
no-till crop production and light or well-managed moderate graz-
ing of cover crops by animals can push vegetation down near the
ground to decompose while the livestock excrete many nutrients
back to the soil (Haynes and Williams, 1993). Both these processes
improve soil health and fertility thus reducing or eliminating the
need for mineral fertilizers, and provides a return on investment
for cover crops by feeding animals, which help farmers justify
growing them (Roesch-McNally et al., 2017; LaCanne and
Lundgren, 2018). Besides improving soil fertility with the above-
mentioned processes, symbiosis between crop roots and mycor-
rhizal fungi early in the growing season can allow for
development of an extensive hyphal network in the soil that can
provide nutrients including water to the crop such that mineral
fertilizer is not needed and if used, it can prevent the low-cost
(to the farmer) symbiosis with fungi from developing early in the
growing season by reducing plant input for symbiosis (Grant
et al., 2005). In regard to the animals in this type of system, small
herbivores such as Muscovy ducks, geese and rabbits should be
considered for grazing cover crops, and not just cattle or small
ruminants, because small herbivores can compete much better
with chickens and pigs for efficient meat production (Dickerson,
1978).

As social pressure regarding animal welfare and sustainability
mount, it is possible that over the next 10–30 years, a greater pro-
portion of citizens will want animals raised with more space and
environmental variety, and with freedom of diet selection without
use of antibiotics except for healthcare (Vigors et al., 2021).
Improving human health will also be a high priority for several rea-
sons including reducing healthcare costs. Many people will proba-
bly continue to eat meat, eggs and dairy products, which is
scientifically justifiable because these foods contain a wide variety
of nutrients (e.g., vitamin B12, taurine, carnosine, cysteamine, cre-
atine, anserine, various fatty acids and other bioactive peptides
with potential health effects; Raiten et al., 2020; van Vliet et al.,
2020) that are unlikely to be found in plant-based meat and dairy
substitutes (Vanga and Raghavan, 2018; van Vliet et al., 2020). For
instance, beef alone contains an expected >40 000 unique com-
pounds (FoodDB, 2020) and we are likely only scratching the sur-
face with our understanding of the complexity of the ‘food
matrix’ and its influence on human health (Barabási et al., 2020;
van Vliet et al., 2020). Moreover, studies show the agroecological
importance of integrating livestock with forage and arable crop
production (with less tillage) for improving soils, nutrient cycling,
and agricultural sustainability (Kronberg and Ryschawy, 2019;
Moraes et al., 2019; Lemaire et al., 2019; Denardin et al., 2020).
Incentivizing such practices through community-based initiatives,
and institutional and governmental support, is an important strat-
egy to produce more products per unit land, thereby enhancing
food security (Sulc and Tracy, 2007; Mbow et al., 2019).

In this review, we address the great challenge of trying to close
nutrient cycles for intensive and semi-intensive livestock produc-
tion with special focus on N and P. The challenge of improving soil
health is an important part of this (Lehman et al., 2015; Meena
et al. 2017). We take an integrative approach to intensive and
semi-intensive meat, egg, and dairy production, and attempt to
add ideas to the literature that expand the discussion beyond
3

excellent papers by Withers et al. (2015a and 2015b)—who pro-
posed a five-point framework to improve stewardship of phospho-
rus and other scarce nutrients and many excellent ‘green’ ideas—
and Dumont et al. (2012 and 2020), who argued for using agroecol-
ogy and industrial ecology to reduce environmental impacts of ani-
mal production and adding diversity to animal production systems.
An integrative approach is also needed to assess risks and benefits
from various livestock policies to help minimize unintended conse-
quences. For example, while the compound 3-nitrooxypropanol
can lower enteric methane emissions from cattle, it can also
increase urea-N levels in animals (Melgar et al., 2020), which could
lead to more urea excretion and more ammonia and/or nitrous
oxide emissions from soil or manure (Mosier et al., 1998; Powell
et al., 2011; Powell and Wattiaux, 2011; Duval et al., 2016). Fur-
thermore, feeding more grain to young beef cattle with genetic
potential for fast growth can increase their growth rate, reduce
the amount of methane they produce before slaughter (compared
to grass-fed cattle) and perhaps increase the net profit from pro-
ducing them (if grain is inexpensive). However, feeding more grain
may also increase the amount of N and P applied in fertilizers to
grow more grain and some of this N and P may be lost from the
land and pollute air and water. These two examples illustrate the
need to carefully consider trade-offs.

Lovelock (2015 and 2019) warned us earlier while Bradshaw
et al. (2021) recently reinforced the notion that future environ-
mental conditions on Earth will be much worse than most people
currently believe. Bradshaw et al. (2021) argued that the scale of
the threats to life on Earth is so great that it is difficult to grasp—
even for experts—and that our political and economic systems
are not prepared to handle the predicted disasters. Therefore,
extraordinary responsibility is placed on scientists to communicate
these urgencies candidly and accurately to all non-scientists
including those in government, business, and the general public.
Hagens (2020) has similar concerns and argues that we are not
prepared financially (too much debt) and are far too dependent
on fossil fuels to satisfy our huge and growing appetite for energy
given the grand challenges we will have to address to maintain the
projected eight to eleven billion people on our planet. Hagens
(2020) argues that 7.7 billion people are acting like a superorgan-
ism that is unable to alter its behavior for its own long-term well-
being. Others have argued that the primary limitations on signifi-
cantly reducing N and P pollution from livestock production are
not the science and engineering, but rather the nature of human
beings, the ethos of our societies, and their politics, policies, and
economics (Berry, 1977; Gordon et al., 2017; Lovelock, 2015 and
2019). Therefore, we also discuss these aspects relative to how
we might improve animal production systems to make them less
polluting and more effective in their use of N, P, and other
nutrients.
Intensive animal production systems – Modifying existing
systems, adding new systems and learning from natural
systems

Intensive and semi-intensive animal production systems can
take many forms, including those used much less now than in
the past. We can gain valuable knowledge from studying sustain-
able organic systems such as those used long ago and for thou-
sands of years in China, Korea, and Japan (King, 1911) and from
evaluating much more recent regenerative systems that are not
capital intensive, but have multiple animal species raised in syner-
gistic ways on pastures for part of the year. Examples in the US
include Polyface Farm in Virginia, which raises cattle, pigs, turkey,
rabbits, and chickens for meat and eggs (Salatin, 2011); Brown’s
Ranch in North Dakota, which raises similar types of livestock
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and grows arable and cover crops (Brown, 2018); and Apricot Lane
Farms in California, which also raise many species of livestock inte-
grated with production of more than 200 varieties of fruits and
vegetables (Apricot Lane Farms, 2020). Other examples include
Asian systems that integrate rice, duck, azolla, and fish in Japan
(Furuno, 2002). For example, Cheng-fang et al. (2008) found that,
compared to rice alone, the presence of ducks and fish decreased
N losses via ammonia volatilization, nitrous oxide emissions,
leaching of nitrate and total N (55.0, 52.6 and 51.4 kg N lost/ha
for rice only, rice-fish and rice-duck, respectively). There are simi-
lar examples of this type of integration using rabbit and fish or
duck and fish in India and Thailand (Mahadevaswamy and
Venkataraman, 1988). An integrated rabbit, fish, and rice system
in Rwanda is an example where Nile tilapia (Oreochromis niloticus)
recovered 19–38% of N and 17–34% of P of the total N and P inputs
in the pond water, after which the pond effluent was used to irri-
gate rice produced without inorganic fertilizers (Taboro, 2011).
Integrated rice-animal farming can also help to remove health
threats to local communities, such as the consumption of mosquito
larvae by fish in rice fields, which reduces incidence of malaria in
local farming communities (Lacey and Lacey, 1990).

In comparison to current conventional agriculture that relies on
mineral fertilizers, an important feature in the non-capital-
intensive system described above is potential improvement by
the use of manure and animal-plant integration. However, given
the complexity of interactions in regard to manure (Rotz, 2004),
exacting management of each system is critical. Alternatively,
some new capital-intensive production systems use sophisticated
equipment, such as robotics, to reduce human labor. One example
is Ynsect’s mealworm production combined with aquaculture
shrimp or fish production (Ynsect, 2020), which uses mealworms
as shrimp and fish feed. A critical aspect of these production sys-
tems is synergy among two or more animal species such that there
is potential for increased recycling of N and P as well as other
nutrients within the production system. This does not imply that
all production systems must have synergy among two or more ani-
mal species to recycle N, P and other nutrients well (nor does it
guarantee that nutrients will be recycled). A beef cattle farm where
all the forage and feeds consumed by animals are grown on the
farm and the manure recycled back to the farmland may recycle
nutrients well and be relatively sustainable. Garnier et al. (2016)
found that French organic crop farmers using long and diversified
crop rotations with alfalfa as the starter crop of the rotation fol-
lowed by a cereal and a grain legume reduced N losses in surface
water by half, and were as efficient as non-organic conventional
farmers in regard to N yield, but had 21% less N protein exported
with their organic rotations and 26% lower soil N inputs (with
exogenous inputs only 11% of total soil N inputs). When the
organic crop farmers could sell their alfalfa to dairy farmers and
obtain manure, the mixed system was improved, and despite the
lower cereal yield of the organic systems, the farmers’ incomes
were not reduced because their expenses were much lower (no
mineral fertilizer or pesticides purchased).

However, given the relatively low meat production efficiency of
beef cattle—including cradle-to-producer gate life cycle energy use,
feed-to-food caloric flux, and protein and calorie retention of beef
cattle compared to poultry, including herbivorous geese, rabbits,
pigs, and some fish (Dickerson, 1978; Pelletier et al., 2011;
Shepon et al., 2016; Fry et al., 2018)—the nutrients are probably
not producing as much meat per hectare of land as they could if
they were increasingly recycled through poultry, fish, or pigs. This
is especially important for nutrients such as P that appear to have a
limited supply (Withers et al., 2015b). However, we are not aware
of any calculations of food production efficiency that take into con-
sideration the very important ecological services that a diverse
mixture of animals can provide in mixed crop-livestock systems
4

following agroecological principles. These include nutrient fertil-
ization with excreta, weed and pest control, and stomping cover
crop material closer to the soil surface where a variety of inverte-
brate and microbial species can move the C, N, P and other nutri-
ents into the soil. This more comprehensive ecological
understanding of food production efficiency, which encompasses
the vital roles that animals can play in improving agricultural sus-
tainability, is unfortunately lacking but badly needed. Moreover,
we need to heed the wisdom of Wendell Berry’s words in his clas-
sic book The Unsettling of America – Culture and Agriculture. ‘The
exploiter is a specialist, an expert; the nurturer is not. The standard
of the exploiter is efficiency; the standard of the nurturer is care.
The exploiter’s goal is money, profit; the nurturer’s is health –
his land’s health, his own, his family’s, his community’s, his coun-
try’s. Whereas the exploiter asks of a piece of land only how much
and how quickly it can be made to produce, the nurturer asks a
question that is much more complex and difficult: What is its car-
rying capacity? (That is: How much can be taken from it without
diminishing it? What can it produce dependably for an indefinite
time?)’ We argue that for agriculture to be more sustainable and
less polluting, farmers and ranchers must balance efficiency and
profit with care and operate as ‘efficient nurturers’.

While N fertilizer production is probably more reliable than P
fertilizer production due to the Haber-Bosch process, industries
use large amounts of natural gas and some coal to produce N fer-
tilizer, resulting in large emissions of carbon dioxide, nitrous oxi-
des and other pollutants. Thus, recycling nutrients is preferable
irrespective of scarcity. While we are likely to eventually produce
green ammonia N using solar or wind energy as well as bio-
based P fertilizer (Eckelkamp, 2020), this N and P could still be mis-
managed in a manner that pollutes, air, and water. This is also true
with poorly applied manure or poor grazing management that
allows for poor distribution of livestock across fields so regardless
of the form of N and P, they need to be applied following up-to-
date guidelines (e.g., injected with minimal disturbance to pasture
or no-till crop field) and not in excess for plant needs (Maguire
et al., 2011). Also, due to problematic potential occurrence of heavy
metals, antibiotics and resistance genes in manure, which can be
transferred to soil (Guo et al., 2018), integrated crop-livestock sys-
tems must be developed in a holistic or comprehensive manner
that carefully evaluates and manages all aspects of complex agroe-
cological farming systems such that no parts of the systems greatly
harm other parts. A good example of this is the Brown Ranch in the
northcentral US which uses very few external inputs, lets their
livestock do much of the work via grazing much of the year (in-
cluding cold winters), and appears to have good soil health and
profitability (Brown, 2018; LaCanne and Lundgren, 2018; Fenster
et al., 2021).

Common intensive, single-species, animal production systems
and simple cropping systems, such as continuous maize or a
maize-soybean rotation, tends to suffer from poor recycling of N,
P, and other valuable nutrients as well as water pollution (Jarvie
et al., 2015). Several practices can help reduce loss of N, P, and
other nutrients, including precision agriculture technology (vari-
able rate applications of mineral fertilizers to crops), engineered
nanoparticles as fertilizers, reduced tillage, stimulating soil biota
to enhance nutrient cycling, nitrification inhibitors, altering type
and timing of fertilization, timing of forage cutting, altering type
of pen surface material, reducing stocking rates and N and P levels
in feed, as well as other technologies and approaches. However,
they also need to be economically feasible for conventional non-
integrated producers who are often marginally profitable. Con-
sumers may need to accept policies that support the internaliza-
tion of environmental costs (and thus pay higher prices for some
foods), which have traditionally been externalized (Tegtmeier
and Duffy, 2004) and tolerated or ignored. Moreover, consumers



S.L. Kronberg, F.D. Provenza, S. van Vliet et al. Animal xxx (xxxx) xxx
must understand that, while the ‘‘true cost” of food does not
appear directly on their grocery bill, they are paying for these
externalized costs in other ways (Pretty et al., 2001). For example,
costs incurred by water delivery companies for cleaning water sup-
plies including removal of nitrate and eutrophication management
are passed onto their customers. Tolerating or ignoring environ-
mental costs is becoming more difficult to do with the amount of
food produced nowadays and the urgency to achieve more sustain-
able production systems (Bradshaw et al. 2021).

Ecological and economic concerns over widespread fertilizer
use have prompted the development of sensing technologies to
measure and monitor N and P throughout agricultural fields. Pro-
cedures to determine macronutrients within soils that have previ-
ously been limited for use in lab environments have been adapted
for in-field, portable sensing applications. Non-destructive meth-
ods, such as near-infrared spectroscopy (NIRS), can be used for
in-field evaluation of multiple macronutrients (Sinfield et al.,
2010), along with other physical soil characteristics. Large data-
bases of soil spectra are continuously being developed (Rossel
et al., 2016) and further support the widespread use and adoption
of visible and near-infrared spectroscopy sensing technologies,
which can be deployed from ground or aerial vehicles. In situ soil
sensors have long been used, but are becoming smaller, more
energy efficient, more accurate, and come at lower cost, which is
leading to potentially transformative approaches for on-farm soil
testing at high spatiotemporal scales (Rossel and Bouma, 2016).
More recent work has explored the development of biosensors
for ion-specific detection and measurement of macronutrients in
particular forms, for example, nitrites (Siontorou and
Georgopoulos, 2016). These sensor systems ultimately generate
high-resolution maps of N, P, and other macronutrients, which
can be used to generate prescription maps for variable rate appli-
cation or used in modeling crop nutrient productivity. Soil nutrient
sensing, in its variety of forms, is becoming more accessible and
can be adopted as a low-cost approach to better understand nutri-
ent distribution, cycling, and uptake on-farm.

Other approaches to improve nutrient recycling for intensive
animal production include (1) collaborative manure distribution
among farms to farmland where manure is needed (Spiegal et al.,
2020), and (2) modifying confinement- and barn-based production
systems with technologies to remove nutrients such as P and trace
minerals from excreta with approaches such as the MAPHEX (Man-
ure Phosphorus Extraction) System (Church et al., 2018; 2020) or
other P and N removal technologies, such as air scrubbers (Melse
and Ognik, 2005; Melse et al., 2006; Yilmazel and Demirer, 2013;
Yerushalmi et al., 2013; Szögi et al., 2015; De Vies and Melse,
2017; Georgiou et al., 2019; Montalvo et al., 2020; Bhambri and
Karn, 2020), that make it more feasible to remove and recycle N,
P and trace minerals for fertilizing arable crop fields and pastures.
Using this new technology with existing forms of intensive animal
production might make meat, dairy products, and eggs from
confinement-based systems more expensive, but it may also
reduce costs to improve environmental health that have been
externalized for intensive animal production (Naylor et al., 2005).
There are global companies that are advancing combinations of
pollution-control technologies that could increase the cost of some
functions while decreasing others.

As societies in some countries demand that animals be given
more freedom of movement with less crowded conditions, expen-
sive confinement systems such as those currently used to produce
pigs may no longer be as economically viable. Moreover, if soci-
eties demand dairy cows to have a longer life than the abnormally
short life many currently have (3–4 years in countries with high-
producing dairy cows; De Vries and Marcondes, 2020), intensive
dairy operations will have to adjust to survive. Therefore, we
expect to see much greater development and use of combinations
5

of confinement and pasture systems to meet demands of the public
in the future. For example, animals may be confined closer
together during winter, but given access to pasture and crop fields
(crop residue from arable crops and/or cover crops) during or after
the growing season. The pastures should ideally be mixtures of
grasses and legumes that are not fertilized with N or P, and given
the serious predicament we are in, we need to consider more inno-
vative systems that, to the best of our knowledge, have not been
thoroughly evaluated. We discuss aspects of conceptual and alter-
native systems below using integrated multi-trophic aquaculture
as a model to reduce N and P lost from a food production system.
For example, Wei et al. (2017) used a red alga seaweed (abalone
feed) to remove dissolved N and P fromwater in Yantian Bay, China
where fish are farm-raised, and determined how much seaweed
would be needed to remove excess N and P generated from farmed
fish production. Along with systems mentioned above, insects and/
or fish could be produced in multi-trophic production systems
with poultry, pigs and/or cattle, and their excreta used to either
produce insect larvae or earthworms that are used as feed for both
terrestrial and aquatic animals, which reduces the need for
fishmeal or feeds produced with fertilizers and fossil fuels, while
the residue from the invertebrate production is carefully returned
to crop fields and pastures (Fig. 1). For example, the black soldier
fly (Hermetia illucens) can grow well in dairy cow, pig, or chicken
manure and remove 60–70% of P and 30–55% of N from these
manures (van Huis, 2013; Zhou et al., 2013). The goal of these
systems would be to reduce or eliminate the use of N and P
fertilizers.

To further diversify, the aquaculture portion of the system could
be made into an integrated multi-trophic system with fish, and
extractive shellfish and seaweed that function as bio-remediators
to utilize uneaten feed intended for the fish and/or fish excreta. A
major advantage for sustainable intensification of such a system
is that less efficient feed converters, such as cattle (Dickerson,
1978), can be combined with more efficient converters, such as
poultry and/or fish and shellfish (Pelletier et al., 2011; Shepon
et al., 2016; Fry et al., 2018), to improve overall production effi-
ciency of the entire animal production system and recycle N, P
and other nutrients through multiple animal species. For example,
cattle, poultry, fish, shrimp, and insects may be produced more
efficiently in an integrated system with insects and worms grown
on composted mixtures of cattle manure, with poultry, fish, and/or
shrimp consuming insect larvae, worms and plant-based feeds
from crop residues. Although cattle do not convert grain into meat
as efficiently as do chickens, nor are cattle as efficient at converting
forage into meat as efficiently as rabbits (Dickerson, 1978), their
manure may be very useful to improve soil health and fertility,
and help grow some types of insect larvae and earthworms as
bio-remediators and producers of high protein feeds (Hussein
et al., 2017; Parolini et al., 2020). Insects such as mealworms and
fly larvae can be used as nutritional feed for pigs, poultry, and fish,
and have high content of digestible protein with high levels of
essential amino acids as well as lipids, minerals, and vitamins
(De Marco et al., 2015; Marono et al., 2017; Iaconisi et al., 2018).
Integrated animal production systems may be worrisome in
respect to disease transfer or somewhat distasteful to some people
because they involve the use of animal excreta to grow insect lar-
vae, earthworms or plants or bio-remediators such as sea cucum-
bers (Stenton-Dozey et al., 2020). While more research on multi-
trophic animal production is certainly needed, as is the case for
multi-trophic aquaculture systems (Rosa et al., 2020), several stud-
ies show insect larvae can significantly reduce pathogen content of
manure (Erickson et al., 2004; Awasthi et al., 2020). Nonetheless,
more research is needed on aspects of producing insects fromman-
ure in ways that make them safe as a feed source in all respects
including hygienically (van der Fels-Klerx et al., 2018).



Fig. 1. A conceptual model for potentially linking terrestrial and aquatic animal production with plant production in integrated agricultural production systems.
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We also need to develop N and P use efficiency ratios and do
flow analysis for various types of food provisioning systems (Bai
et al., 2016; Rothwell et al., 2020) so we can compare them easier
and manage them better. For example, a flow analysis for P in a
Northern Ireland food system found that P contained in livestock
manure slurries, which were returned to farmland, exceeded crop
and grass P requirements by 20% and were the largest contributor
to annual excess soil P accumulation. We need the ratios and flow
analyses for various crop-only systems, animal-only and mixed
crop-livestock systems to inform management decisions.
Human behavior – A critical aspect for improving intensive
animal production

Many people have argued that we will have to produce more
animal-based foods with growing human populations and increas-
ing demand and consumption of these foods. However, we lack
evidence to comfortably believe that this is possible given the
amount of environmental damage that has already occurred pro-
ducing animal-based foods. With our current forms of intensive
and semi-intensive animal production, we may be unable to
increase production without crossing planetary boundaries, which
are critical to maintaining resilient Earth systems, and consumers
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(especially in high-income countries) may reduce consumption of
animal-based food in an attempt to improve environmental health
(Leip et al., 2015; Steffen et al., 2015; Desmit et al., 2018). The same
can be said for arable crop production, which has a very long his-
tory of environmental degradation (Montgomery, 2007;
Sanderman et al., 2017). By nature, humans discount damages to
our environment for short-term gains in productivity and wealth,
and we lack evidence that we can greatly increase production of
animal-based foods if this relies primarily on grain and soybean
production, which we struggle to produce sustainably on a large-
scale (Montgomery, 2007). Also, we are still trying to understand
how people conceptualize policies and governance underpinning
them, in order to introduce policy changes that are more effective
(Fischer et al., 2011).

We recognize that (1) people are often not good at implement-
ing conservation practices with a sustained effort over a long per-
iod to achieve desired results, although this is often necessary for
success (Flaten et al., 2019), (2) changing our food production sys-
tems is made more complicated by not encouraging more local
solutions to solve agricultural and water problems (Richter,
2014), and (3) more progress toward sustainability will be made
by giving farmers flexibility to choose the approaches that work
best for each farmer and each farm’s situation, and that incentivize
least-cost control practices to pollution-reduction strategies that
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use mixes of incentives and regulatory constraints like true cap-
and-trade permit trading with economic incentives tied to envi-
ronmental outcomes (Shortle, 2017). In order for change to occur,
farmers need to conclude that regenerative agricultural practices
can generate more income and greatly decrease their impact on
the environment and there is some evidence to support this
(Brown, 2018; LaCanne and Lundgren, 2018). While the impor-
tance of protecting the environment has long been recognized
and substantial expenditures have been made on policies to reduce
negative environmental effects of agricultural production, ineffi-
ciencies of current policy approaches that limit achieving environ-
mental improvements are well-known. These inefficiencies are
tied to the economic, social, cultural, political, and natural com-
plexity of environmental problems, and will require engaging
social and biophysical expertise to develop solutions that work
ecologically, economically, socially, and politically (Shortle, 2017;
Pretty et al., 2020). Lastly, research and development can help only
if farmers have effective incentives to develop and adopt farming
practices that improve environmental and human health
(Dumont et al., 2020). To make production of animal-based foods
more efficient and less polluting, societies in most countries will
probably become convinced that they need to make it more diffi-
cult and expensive to degrade soils, air, water, plant, and animal
communities. For example, grain-fed cattle may be as profitable
to produce as grain-fed chickens when maize is cheap and environ-
mental degradation associated with maize production are exter-
nalized, but if maize is more costly to produce and expensive to
buy when grown with much less environmental degradation, then
animals such as chickens, which utilize maize more efficiently than
cattle, could become more profitable and more desirable to pro-
duce compared to grain-fed cattle. Therefore, more people could
come to understand that requiring arable crops to be produced
with much less environmental degradation is an essential step to
improve the sustainability of animal production.

With a combination of significant changes, we may be able to
sustainably produce enough nutritious and healthful food for
9–10 billion people by 2050, but only if we are willing to better
understand human nature and better understand adaptive capacity
of people (Mortreux and Barnett, 2017), and work to make the sci-
entific approach to solving problems better understood and
accepted. To assist with these changes, animal scientists need to
understand and appreciate research by other scientists (and vice
versa) including evolutionary biologists, primatologists, anthropol-
ogists, and psychologists who have all worked to help us under-
stand human behavior (Wolpert, 2006). While doing so we need
to keep the following worrisome comment by Francis Bacon in
mind – ‘‘Man prefers to believe what he prefers to be true”.

Deception is a universal feature of life within and among spe-
cies, though self-deception may only occur with people (Trivers,
2010). Trivers’ research suggests that the human unconscious
mind hides true information from the conscious mind, which helps
us understand how people can ignore or downplay environmental
damage to focus on immediate success. Research by scientists who
study primate and human behavior helps us understand many
aspects of human behavior including intragroup cooperation and
apparent irrational aspects of cooperative behavior and violation
of norms of economic decision-making by foregoing maximization
of individual benefit (Kappeler and Silk, 2017). These important
considerations, which are relevant to feeding billions of people
without destroying Earth’s support systems, can help us under-
stand the challenge of getting some groups of people to eat more
fish, herbivorous ducks, geese, and rabbits when their prestige,
wealth, reproductive success, and group cooperation are connected
to beef, pork and chicken production and/or consumption.

More animal scientists need to focus on sustainable animal pro-
duction and work more cooperatively with scientists and managers
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such as soil scientists, agronomists, biogeochemists, hydrologists,
economists, engineers, human nutrition scientists, plant ecologists,
rural sociologists, technology transfer/public relations specialists,
and policy developers (Finley and Fukagawa, 2019). However, this
is difficult to do because specialists have been rewarded for inde-
pendent modes of research and/or development. Thus, they think
their focus is more important than that of other specialists
(Walker, 2019) and this problem is probably connected with self-
deception. Oster et al. (2018) provide a relevant example of this
in the European Union regarding an awkward definition of manure
that, at least a few years ago, was limiting potential for generating
chemical fertilizer from excess manure. So, we need leaders who,
like Steve Jobs and Elon Musk, insist that their teams do not create
silos or divisions that lead to an ‘us versus them mentality and
impede communication’, which is a natural tendency within peo-
ple. Instead, people need to be encouraged to see the ‘bigger pic-
ture’ and work for the success of the larger group.
Conclusion

We face significant pollution and environmental degradation
problems associated with the intensive production of food-
producing animals, and we are not currently dealing with these
problems effectively. Some argue that sustainable farming is not
practical or even possible in some places even with traditional
extensive animal production and we may have to accept degraded
waterbodies in some farming areas (Doody et al., 2016). While
some eutrophic aquatic ecosystems may be difficult and take a
long time to clean-up, drastically changing the type of animals pro-
duced may be the remedy in some challenging locations. For exam-
ple, one complex system might include some extensive and some
intensive production—a few cattle grazing a pasture with a mixture
of plant species, with insect larvae and/or earthworms grown in
cattle manure (perhaps mixed with wasted hay and straw), and
chickens eating some vegetation along with insect larvae and
worms, plus trout in aquaculture tanks eating larvae and worms
with shellfish utilizing feed missed by the trout, and trout excreta
with outflow from the tanks that are precisely put back into pas-
ture soils (Fig. 1). Alternatively, the aquaculture system might be
a recirculating system (Bergman et al., 2020).

We need to open our minds to new ideas and expand our
knowledge and collaboration to improve our understanding of
what we need to change in order to produce animal-based foods
with fewer negative impacts on the environment. We need on-
farm type research and farms that can serve as demonstration sites
and ideally whole watersheds (catchments) where the putative
best combinations of techniques are used and evaluated for multi-
ple years in real-world settings (Frei et al., 2020). These need to be
used aggressively to educate consumers and farmers (and indus-
trial producers) so that they know what is possible and how it
can be achieved. Some of these farms/production sites need to be
in catchments that are the most challenging to prevent pollution
of aquatic and terrestrial ecosystems with N, P and other nutrients.
Reluctant farmers/producers and consumers will be more likely to
support change when they hear about and see realistic examples of
what is possible.
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